Models of flocking with asymmetric interactions

Sébastien Motsch
CSCAMM, University of Maryland

joint work with

Eitan Tadmor (CSCAMM, University of Maryland)

Probabilistic methods in kinetic theory
CIRM, Luminy, 15th of July 2011
Outline

1. Introduction
2. The Cucker-Smale model
 - The model
 - Flocking for the C-S model
 - Drawbacks of the C-S model
 - A new model
3. Flocking for the new model
 - ℓ^∞ approach
 - Active sets
 - Convergence
4. Kinetic and macroscopic equations
 - Kinetic equation
 - Macroscopic equation
 - Convergence at the macroscopic level
5. Conclusion
Outline

1. Introduction
2. The Cucker-Smale model
 - The model
 - Flocking for the C-S model
 - Drawbacks of the C-S model
 - A new model
3. Flocking for the new model
 - ℓ^∞ approach
 - Active sets
 - Convergence
4. Kinetic and macroscopic equations
 - Kinetic equation
 - Macroscopic equation
 - Convergence at the macroscopic level
5. Conclusion
What is flocking?

Nature gives many examples of flocking behavior.

There are two characteristics in a flock:

- the individuals stay at bounded distance from each other (bounded distance),
- they all move in the same direction (alignment).
Open questions

These systems ask different questions:

- How do individuals manage to create a flock?
- What kind of rules will lead to a flock?
Open questions

These systems ask different questions:

- How do individuals manage to create a flock?
- What kind of rules will lead to a flock?

Those questions are difficult to answer experimentally.

The use of models is essential.
Boids model

Classical model with 3 zones

Boids model

Outline

1. **Introduction**
2. **The Cucker-Smale model**
 - The model
 - Flocking for the C-S model
 - Drawbacks of the C-S model
 - A new model
3. **Flocking for the new model**
 - ℓ^∞ approach
 - Active sets
 - Convergence
4. **Kinetic and macroscopic equations**
 - Kinetic equation
 - Macroscopic equation
 - Convergence at the macroscopic level
5. **Conclusion**
The Vicsek model

Discrete Vicsek model (’95)

\[
\begin{align*}
 x_i^{n+1} &= x_i^n + \Delta t \omega_i^n \\
 \omega_i^{n+1} &= \overline{\Omega}_i^n + \epsilon \\
 \text{with } \overline{\Omega}_i^n &= \frac{\sum |x_j - x_i| < R \omega_j^n}{\sum |x_j - x_i| < R \omega_j^n}, \epsilon \text{ noise.}
\end{align*}
\]
The Vicsek model

Discrete Vicsek model ('95)

\[x_i^{n+1} = x_i^n + \Delta t \omega_i^n \]

\[\omega_i^{n+1} = \Omega_i^n + \epsilon \]

with \[\Omega_i^n = \frac{\sum |x_j - x_i| < R \omega_j^n}{\sum |x_j - x_i| < R \omega_j^n} \], \(\epsilon \) noise.

Continuous Vicsek model ('08 Degond, M.)

\[\frac{dx_i}{dt} = \omega_i \]

\[d\omega_i = (\text{Id} - \omega_i \otimes \omega_i)(\nu \Omega_i dt + \sqrt{2D} dB_t) \]
The Vicsek model

Discrete Vicsek model ('95)

\[x_i^{n+1} = x_i^n + \Delta t \omega_i^n \]
\[\omega_i^{n+1} = \Omega_i^n + \epsilon \]

with
\[\Omega_i^n = \frac{\sum |x_j - x_i| < R \omega_j^n}{\sum |x_j - x_i| < R \omega_j^n} \], \(\epsilon \) noise.

Continuous Vicsek model ('08 Degond, M.)

\[\frac{dx_i}{dt} = \omega_i \]
\[d\omega_i = (I_d - \omega_i \otimes \omega_i)(\nu \Omega_i dt + \sqrt{2D} dB_t) \]

Pbm: The Vicsek model is too complex to investigate analytically its asymptotic behavior.
In 2007, Cucker and Smale proposed a simplified version of the Vicsek model. They made three simplifications:

- No noise in the model ($\epsilon = 0$),
- No constraint on the velocity ($|v_i| \neq 1$),
- The mean velocity ($\bar{\Omega}_i$) is simply a sum of the other velocities, **weighted** by the distance.
The Cucker-Smale model

They end-up with the following model:

\[
\frac{d\mathbf{x}_i}{dt} = \mathbf{v}_i, \quad \frac{d\mathbf{v}_i}{dt} = \frac{\alpha}{N} \sum_{j=1}^{N} \phi_{ij}(\mathbf{v}_j - \mathbf{v}_i), \tag{1}
\]

where \(\alpha > 0 \) and \(\phi_{ij} \) is the influence of agent \(j \) on agent \(i \):

\[\phi_{ij} := \phi(|\mathbf{x}_j - \mathbf{x}_i|).\]
They end-up with the following model:

\[
\begin{align*}
\frac{dx_i}{dt} &= v_i, \\
\frac{dv_i}{dt} &= \frac{\alpha}{N} \sum_{j=1}^{N} \phi_{ij}(v_j - v_i),
\end{align*}
\] (1)

where \(\alpha > 0 \) and \(\phi_{ij} \) is the influence of agent \(j \) on agent \(i \):

\[
\phi_{ij} := \phi(|x_j - x_i|).
\]

The so-called influence function, \(\phi(\cdot) \), is a strictly positive decreasing function.

Example: \(\phi(r) = \frac{1}{1+r} \).
Definition of flocking

Let \(\{x_i(t), v_i(t)\} \) the positions and the velocities of \(N \) agents, and let \(d_X(t) \) and \(d_V(t) \) denote the diameters in position and velocity phase spaces:

\[
d_X(t) = \max_{i,j} |x_j(t) - x_i(t)|, \quad d_V(t) = \max_{i,j} |v_j(t) - v_i(t)|.
\]

![Diagram of flocking](image)
Definition of flocking

Let \(\{x_i(t), v_i(t)\} \) the positions and the velocities of \(N \) agents, and let \(d_X(t) \) and \(d_V(t) \) denote the diameters in position and velocity phase spaces:

\[
 d_X(t) = \max_{i,j} |x_j(t) - x_i(t)|, \quad d_V(t) = \max_{i,j} |v_j(t) - v_i(t)|.
\]

Def. The system \(\{x_i(t), v_i(t)\}_{i=1,\ldots,N} \) converges to a flock if the following two conditions hold, uniformly in \(N \),

\[
 \sup_{t \geq 0} d_X(t) < +\infty \quad \text{and} \quad \lim_{t \to +\infty} d_V(t) = 0.
\]
Flocking for the C-S model

The main result on the C-S model is the following theorem.

Thm. If the influence function ϕ decays slowly enough:

$$\int_0^\infty \phi(r) \, dr = +\infty,$$

then the C-S model converges to a flock.
Flocking for the C-S model

The main result on the C-S model is the following theorem.

Thm. If the influence function ϕ decays slowly enough:

$$\int_0^\infty \phi(r) \, dr = +\infty,$$

then the C-S model converges to a flock.

Remarks.
- The key tool for the proof is the *symmetry property* of the pairwise influence ϕ_{ij} (e.g. $\phi_{ij} = \phi_{ji}$).
Flocking for the C-S model

The main result on the C-S model is the following theorem.

Thm. *If the influence function ϕ decays slowly enough:*

$$\int_0^\infty \phi(r) \, dr = +\infty,$$

then the C-S model converges to a flock.

Remarks.

- The key tool for the proof is the *symmetry property* of the pairwise influence ϕ_{ij} (e.g. $\phi_{ij} = \phi_{ji}$).
- This symmetry implies that the *total momentum* is conserved:

$$\frac{d}{dt} \left(\frac{1}{N} \sum_{i=1}^N v_i(t) \right) = 0 \quad \Rightarrow \quad \bar{v}(t) := \frac{1}{N} \sum_{i=1}^N v_i(t) = \bar{v}(0).$$
Sketch of the proof: ℓ^2 approach

We look at the variance $Var = \frac{1}{N} \sum_i |v_i - \bar{v}|^2$:
Sketch of the proof: ℓ^2 approach

We look at the variance $\text{Var} = \frac{1}{N} \sum_i |v_i - \bar{v}|^2$:

$$\frac{d}{dt} \text{Var}(t) = \frac{2}{N} \sum_i \langle \dot{v}_i, v_i - \bar{v} \rangle = \frac{2}{N^2} \sum_{i,j} \phi_{ij} \langle v_j - v_i, v_i - \bar{v} \rangle$$
Sketch of the proof: ℓ^2 approach

We look at the variance $\text{Var} = \frac{1}{N} \sum_i |\mathbf{v}_i - \bar{\mathbf{v}}|^2$:

$$\frac{d}{dt} \text{Var}(t) = \frac{2}{N} \sum_i \langle \dot{\mathbf{v}}_i, \mathbf{v}_i - \bar{\mathbf{v}} \rangle = \frac{2}{N^2} \sum_{i,j} \phi_{ij} \langle \mathbf{v}_j - \mathbf{v}_i, \mathbf{v}_i - \bar{\mathbf{v}} \rangle$$

$$= - \frac{1}{N^2} \sum_{i,j} \phi_{ij} |\mathbf{v}_j - \mathbf{v}_i|^2 \quad \text{(by symmetry } \phi_{ij} = \phi_{ji})$$
Sketch of the proof: ℓ^2 approach

We look at the variance $\text{Var} = \frac{1}{N} \sum_i |\mathbf{v}_i - \mathbf{v}|^2$:

$$\frac{d}{dt} \text{Var}(t) = \frac{2}{N} \sum_i \langle \dot{\mathbf{v}}_i, \mathbf{v}_i - \mathbf{v} \rangle = \frac{2}{N^2} \sum_{i,j} \phi_{ij} \langle \mathbf{v}_j - \mathbf{v}_i, \mathbf{v}_i - \mathbf{v} \rangle$$

$$= - \frac{1}{N^2} \sum_{i,j} \phi_{ij} |\mathbf{v}_j - \mathbf{v}_i|^2 \quad \text{(by symmetry $\phi_{ij} = \phi_{ji}$)}$$

$$\leq - \frac{\phi(dX)}{N^2} \sum_{i,j} |\mathbf{v}_j - \mathbf{v}_i|^2 = -2\phi(dX) \text{Var}(t).$$
Sketch of the proof: ℓ^2 approach

We look at the variance $\text{Var} = \frac{1}{N} \sum_i |\mathbf{v}_i - \bar{\mathbf{v}}|^2$:

$$\frac{d}{dt} \text{Var}(t) = \frac{2}{N} \sum_i \langle \dot{\mathbf{v}}_i, \mathbf{v}_i - \bar{\mathbf{v}} \rangle = \frac{2}{N^2} \sum_{i,j} \phi_{ij} \langle \mathbf{v}_j - \mathbf{v}_i, \mathbf{v}_i - \bar{\mathbf{v}} \rangle$$

$$= -\frac{1}{N^2} \sum_{i,j} \phi_{ij} |\mathbf{v}_j - \mathbf{v}_i|^2 \quad \text{(by symmetry } \phi_{ij} = \phi_{ji})$$

$$\leq -\frac{\phi(d_X)}{N^2} \sum_{i,j} |\mathbf{v}_j - \mathbf{v}_i|^2 = -2\phi(d_X) \text{Var}(t).$$

To conclude, we use that the diameter $d_X(t)$ grows at most linearly ($d_X(t) \lesssim C \cdot t$) and the Gronwall lemma.

Ref. Cucker-Smale ('07), Ha-Tadmor ('08), Carrillo-Fornasier-Rosado-Toscani ('09), Ha-Liu ('09).
Drawbacks of the C-S model

Certain aspects of the C-S model are too simple. We mention two of them.
Drawbacks of the C-S model

Certain aspects of the C-S model are too simple. We mention two of them.

1) **Symmetry of the interaction:** $\phi_{ij} = \phi_{ji}$
Certain aspects of the C-S model are too simple. We mention two of them.

1) **Symmetry of the interaction:** \(\phi_{ij} = \phi_{ji} \)

In many scenario, interaction among individual is not symmetric:

Example 1

Agent j is in front of agent i.

\[(x_i, v_i) \quad (x_j, v_j)\]
Certain aspects of the C-S model are too simple. We mention two of them.

1) **Symmetry of the interaction:** $\phi_{ij} = \phi_{ji}$

In many scenario, interaction among individual is not symmetric:

Example 1

Agent j is in front of agent i.

$$(x_i, v_i) \quad (x_j, v_j)$$

Example 2

Agent j has a lot of neighbors.

x_i \quad x_j
Drawbacks of the C-S model

2) The weight $1/N$:

$$\frac{dv_i}{dt} = \frac{\alpha}{N} \sum_{j=1}^{N} \phi_{ij} (v_j - v_i)$$
Drawbacks of the C-S model

2) The weight $1/N$:

$$\frac{dv_i}{dt} = \frac{\alpha}{N} \sum_{j=1}^{N} \phi_{ij}(v_j - v_i)$$

Example 3

In the "small" group G_1 alone:

$$\frac{dv_i}{dt} = \frac{\alpha}{N_1} \sum_{j=1}^{N_1} \phi_{ij}(v_j - v_i)$$
Drawbacks of the C-S model

2) The weight $1/N$:

$$\frac{dv_i}{dt} = \frac{\alpha}{N} \sum_{j=1}^{N} \phi_{ij}(v_j - v_i)$$

Example 3

In the “small” group G_1 with the “large” group G_2:

$$\frac{dv_i}{dt} = \frac{\alpha}{N_1 + N_2} \sum_{j=1}^{N_1+N_2} \phi_{ij}(v_j - v_i)$$
Drawbacks of the C-S model

2) The weight $1/N$:

\[
\frac{dv_i}{dt} = \frac{\alpha}{N} \sum_{j=1}^{N} \phi_{ij}(v_j - v_i)
\]

Example 3

In the “small” group G_1 with the “large” group G_2:

\[
\frac{dv_i}{dt} = \frac{\alpha}{N_1 + N_2} \sum_{j=1}^{N_1+N_2} \phi_{ij}(v_j - v_i) \approx \frac{\alpha}{N_1} \sum_{j=1}^{N_1} \phi_{ij}(v_j - v_i)
\]
Drawbacks of the C-S model

2) The weight $1/N$:

$$\frac{dv_i}{dt} = \frac{\alpha}{N} \sum_{j=1}^{N} \phi_{ij}(v_j - v_i)$$

Example 3

In the “small” group G_1 with the “large” group G_2:

$$\frac{dv_i}{dt} = \frac{\alpha}{N_1 + N_2} \sum_{j=1}^{N_1 + N_2} \phi_{ij}(v_j - v_i) \approx \frac{\alpha}{N_1 + N_2} \sum_{j=1}^{N_1} \phi_{ij}(v_j - v_i) \approx 0!$$
A new model

We propose the following dynamical system:

\[
\begin{align*}
\frac{d\mathbf{x}_i}{dt} &= \mathbf{v}_i, \\
\frac{d\mathbf{v}_i}{dt} &= \frac{\alpha}{\sum_{k=1}^{N} \phi_{ik}} \sum_{j=1}^{N} \phi_{ij} (\mathbf{v}_j - \mathbf{v}_i),
\end{align*}
\]

(2)

with \(\phi_{ij} = \phi(|\mathbf{x}_j - \mathbf{x}_i|) \) and \(\alpha > 0 \).
A new model

We propose the following dynamical system:

\[
\begin{align*}
\frac{dx_i}{dt} &= v_i, \\
\frac{dv_i}{dt} &= \alpha \sum_{k=1}^{N} \sum_{j=1}^{N} \phi_{ij} (v_j - v_i),
\end{align*}
\]

(2)

with \(\phi_{ij} = \phi(|x_j - x_i|) \) and \(\alpha > 0 \).

The influence of the agent \(j \) on agent \(i \) is weighted by the total influence, \(\sum_{k=1}^{N} \phi_{ik} \), exerted on agent \(i \).
A new model

We propose the following dynamical system:

\[
\begin{align*}
\frac{dx_i}{dt} &= v_i, \\
\frac{dv_i}{dt} &= \alpha \frac{1}{\sum_{k=1}^{N} \phi_{ik}} \sum_{j=1}^{N} \phi_{ij} (v_j - v_i), \quad (2)
\end{align*}
\]

with \(\phi_{ij} = \phi(|x_j - x_i|) \) and \(\alpha > 0 \).

The influence of the agent \(j \) on agent \(i \) is weighted by the total influence, \(\sum_{k=1}^{N} \phi_{ik} \), exerted on agent \(i \).

Remark. If \(\phi_{ij} \approx \phi_0 \) \(\Rightarrow \) the C-S dynamics.
A new model

We propose the following dynamical system:

\[
\frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = \frac{\alpha}{\sum_{k=1}^{N} \phi_{ik}} \sum_{j=1}^{N} \phi_{ij} (v_j - v_i),
\]

(2)

with \(\phi_{ij} = \phi(|x_j - x_i|) \) and \(\alpha > 0 \).

The influence of the agent \(j \) on agent \(i \) is weighted by the total influence, \(\sum_{k=1}^{N} \phi_{ik} \), exerted on agent \(i \).

Remark. If \(\phi_{ij} \approx \phi_0 \Rightarrow \) the C-S dynamics. Otherwise the model better captures strongly “non-homogeneous” scenarios (Example 3).
A new model

The model can be written as:

\[
\begin{align*}
\frac{dx_i}{dt} &= v_i, \\
\frac{dv_i}{dt} &= \alpha \sum_{j=1}^{N} a_{ij} (v_j - v_i),
\end{align*}
\]
A new model

The model can be written as:

\[
\frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = \alpha \sum_{j=1}^{N} a_{ij}(v_j - v_i),
\]

with:

\[
a_{ij} := \frac{\phi(|x_j - x_i|)}{\sum_{k=1}^{N} \phi(|x_k - x_i|)} \geq 0, \quad \sum_{j} a_{ij} = 1.
\]
A new model

The model can be written as:

\[
\frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = \alpha \sum_{j=1}^{N} a_{ij} (v_j - v_i),
\]

with:

\[
a_{ij} := \frac{\phi(|x_j - x_i|)}{\sum_{k=1}^{N} \phi(|x_k - x_i|)} \geq 0, \quad \sum_{j} a_{ij} = 1.
\]

The new model lacks the **symmetry property**:

Non-symmetric interaction

\[
a_{ij} \neq a_{ji}
\]
A new model

The model can be written as:

\[
\frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = \alpha \sum_{j=1}^{N} a_{ij} (v_j - v_i),
\]

with:

\[
a_{ij} := \frac{\phi(|x_j - x_i|)}{\sum_{k=1}^{N} \phi(|x_k - x_i|)} \geq 0, \quad \sum_{j} a_{ij} = 1.
\]

The new model lacks the symmetry property:

Non-symmetric interaction

\[
a_{ij} \neq a_{ji}
\]

The total momentum \((\bar{v} = \frac{1}{N} \sum_i v_i)\) is not preserved in the model!
ℓ^∞ approach

\[
\frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = \alpha \sum_{j=1}^{N} a_{ij} (v_j - v_i), \quad \text{with} \quad a_{ij} \geq 0, \quad \sum_{j} a_{ij} = 1.
\]
\(\ell^\infty \) approach

\[
\frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = \alpha \sum_{j=1}^{N} a_{ij} (v_j - v_i), \quad \text{with} \quad a_{ij} \geq 0, \quad \sum_j a_{ij} = 1.
\]

- Here, the total momentum \(\bar{v} \) is not preserved, the variance \(\text{Var} \) may increase.
The Cucker-Smale model

Flocking for the new model

Kinetic and macroscopic

Conclusion

\[\ell^\infty \text{ approach} \]

\[
\frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = \alpha \sum_{j=1}^{N} a_{ij} (v_j - v_i), \quad \text{with} \quad a_{ij} \geq 0, \quad \sum_j a_{ij} = 1.
\]

- Here, the total momentum \(\bar{v} \) is not preserved, the variance \(\Var \) may increase.
- Instead, we investigate the evolution of the diameter \(dV \):

\[dX \]

\[dX \]

Sébastien Motsch (CSCAMM)
Introduction

The Cucker-Smale model

Flocking for the new model

Kinetic and macroscopic

Conclusion

\ell^\infty \text{ approach}

\[
\begin{align*}
\frac{dx_i}{dt} &= v_i, \\
\frac{dv_i}{dt} &= \alpha \sum_{j=1}^{N} a_{ij} (v_j - v_i), \quad \text{with} \quad a_{ij} \geq 0, \quad \sum_j a_{ij} = 1.
\end{align*}
\]

Here, the total momentum \bar{v} is not preserved, the variance Var may increase.

Instead, we investigate the evolution of the diameter d_V:

\[
\begin{align*}
\frac{dX}{dt} &\quad \text{and} \\
\frac{dX_p}{dt} &\quad \text{and} \\
\frac{dX_q}{dt} &\quad \text{and}
\end{align*}
\]
\(\ell^\infty \) approach

\[
\frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = \alpha \sum_{j=1}^{N} a_{ij}(v_j - v_i), \quad \text{with} \quad a_{ij} \geq 0, \quad \sum_j a_{ij} = 1.
\]

- Here, the total momentum \(\bar{v} \) is not preserved, the variance \(\text{Var} \) may increase.
- Instead, we investigate the evolution of the diameter \(d_V \):

\[d_X \]

\[d_V \]

\[v_p \]

\[v_q \]
The Cucker-Smale model

Flocking for the new model

Kinetic and macroscopic

Conclusion

\(\ell^\infty \) approach

\[
\frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = \alpha \sum_{j=1}^{N} a_{ij} (v_j - v_i), \quad \text{with} \quad a_{ij} \geq 0, \quad \sum_j a_{ij} = 1.
\]

\begin{itemize}
 \item Here, the total momentum \(\bar{v} \) is not preserved, the variance \(\text{Var} \) may increase.
 \item Instead, we investigate the evolution of the diameter \(d_V \):
\end{itemize}

\[\Omega := \text{Conv}\{v_1, \ldots, v_N\} \]

\[d_V = \text{dist}(v_p, v_q) \]

\[d_X = \text{dist}(x_p, x_q) \]
Is d_V decreasing?
Is \(d_V \) decreasing?

Trick: \(\dot{v}_p = \alpha \sum_j a_{pj} (v_j - v_p) \)
Is d_V decreasing?

Trick: $\dot{v}_p = \alpha (\bar{v}_p - v_p)$ with $\bar{v}_p = \sum_j a_{pj} v_j$
Is d_V decreasing?

Trick: $\dot{v}_p = \alpha (\bar{v}_p - v_p)$ with $\bar{v}_p = \sum_j a_{pj} v_j \in \Omega$
Is \(\text{d}_V \) decreasing?

Trick: \(\dot{v}_p = \alpha(\overline{v}_p - v_p) \) with \(\overline{v}_p = \sum_j a_{pj}v_j \in \Omega \)

Therefore,

\[
\frac{d}{dt} |v_p - v_q|^2
\]
Is d_V decreasing?

Trick: $\dot{v}_p = \alpha (\bar{v}_p - v_p)$ with $\bar{v}_p = \sum_j a_{pj} v_j \in \Omega$

Therefore,

$$\frac{d}{dt} |v_p - v_q|^2 = 2 \langle \dot{v}_p - \dot{v}_q, v_p - v_q \rangle$$

$$= 2 (\langle \bar{v}_p - \bar{v}_q, v_p - v_q \rangle - |v_p - v_q|^2)$$

$$\leq 2 |v_p - v_q| (|\bar{v}_p - \bar{v}_q| - |v_p - v_q|) \leq 0.$$
Is d_V decreasing?

Trick: $\dot{v}_p = \alpha(\bar{v}_p - v_p)$ with $\bar{v}_p = \sum_j a_{pj}v_j \in \Omega$

Therefore,

$$\frac{d}{dt}|v_p - v_q|^2 = 2\langle \dot{v}_p - \dot{v}_q, v_p - v_q \rangle$$

$$= 2\left(\langle \bar{v}_p - \bar{v}_q, v_p - v_q \rangle - |v_p - v_q|^2 \right)$$

$$\leq 2|v_p - v_q|\left(|\bar{v}_p - \bar{v}_q| - |v_p - v_q| \right) \leq 0.$$

So $d_V(t)$ is decreasing in time.
Is d_V decreasing?

Trick: $\dot{v}_p = \alpha (\bar{v}_p - v_p)$ with $\bar{v}_p = \sum_j a_{pj}v_j \in \Omega$

Therefore,

$$\frac{d}{dt} \left| v_p - v_q \right|^2 = 2 \langle \dot{v}_p - \dot{v}_q, v_p - v_q \rangle$$

$$= 2 \left(\langle \bar{v}_p - \bar{v}_q, v_p - v_q \rangle - |v_p - v_q|^2 \right)$$

$$\leq 2 |v_p - v_q| \left(|\bar{v}_p - \bar{v}_q| - |v_p - v_q| \right) \leq 0.$$

So $d_V(t)$ is **decreasing** in time. *By how much?*
Active sets

Let \(\{a_{ij}\} \) be a normalized influence matrix, \(a_{ij} > 0, \sum_j a_{ij} = 1 \).
Active sets

Let \(\{a_{ij}\} \) be a normalized influence matrix, \(a_{ij} > 0, \sum_j a_{ij} = 1. \)

Def. The active set, \(\Lambda_p(\theta) \), is the set of agents which influence “\(p \)” more than \(\theta \),

\[
\Lambda_p(\theta) := \{j \mid a_{pj} \geq \theta\}.
\]

The global active set, \(\Lambda(\theta) \), is the intersection of all the active sets at that level,

\[
\Lambda(\theta) = \bigcap_p \Lambda_p(\theta).
\]
Active sets

Let \(\{a_{ij}\} \) be a normalized influence matrix, \(a_{ij} > 0, \sum_j a_{ij} = 1. \)

Def. The active set, \(\Lambda_p(\theta) \), is the set of agents which influence “\(p \)” more than \(\theta \),

\[
\Lambda_p(\theta) := \{j \mid a_{pj} \geq \theta\}.
\]

The global active set, \(\Lambda(\theta) \), is the intersection of all the active sets at that level,

\[
\Lambda(\theta) = \bigcap_p \Lambda_p(\theta).
\]

Remark. This notion of active set, \(\Lambda_p(\theta) \), defines a “neighborhood” for agent “\(p \)”.

Sébastien Motsch (CSCAMM)
Models of flocking with asymmetric interactions
15 July 2011
Key lemma

Lemma. Let \(S \) be an *antisymmetric* matrix bounded by \(M \), \(u, w \) be two positive vectors \((u_i, w_i \geq 0)\) satisfying \(\sum_i u_i = \sum_j w_j = 1 \). Then,

\[
| \sum_{i,j} S_{ij} u_i w_j | \leq M
\]
Key lemma

Lemma. Let S be an *antisymmetric* matrix bounded by M, u, w be two positive vectors $(u_i, w_i \geq 0)$ satisfying $\sum_i u_i = \sum_j w_j = 1$. Then, for every $\theta > 0$, we have

$$| \sum_{i,j} S_{ij} u_i w_j | \leq M \left(1 - \lambda^2(\theta) \theta^2 \right),$$

where $\lambda(\theta)$ denotes the number of “active entries”

$$\lambda(\theta) := \# \{ j \mid u_j \geq \theta \text{ and } w_j \geq \theta \}.$$
Key lemma

Proof lemma.

\[
\sum_{i,j} S_{ij} u_i w_j = \frac{1}{2} \sum_{i,j} S_{ij} (u_i w_j - u_j w_i) \leq \frac{M}{2} \sum_{i,j} |u_i w_j - u_j w_i|.
\]
Key lemma

Proof lemma.

\[\sum_{i,j} S_{ij} u_i w_j = \frac{1}{2} \sum_{i,j} S_{ij} (u_i w_j - u_j w_i) \leq \frac{M}{2} \sum_{i,j} |u_i w_j - u_j w_i|. \]

The identity \(|a - b| \equiv a + b - 2 \min(a, b)\) for \(a, b \geq 0\) yields:

\[\sum_{i,j} S_{ij} u_i w_j \leq \frac{M}{2} \left(\sum_{i,j} u_i w_j + u_j w_i - 2 \min\{u_i w_j, u_j w_i\} \right) \]
Key lemma

Proof lemma.

\[
\sum_{i,j} S_{ij} u_i w_j = \frac{1}{2} \sum_{i,j} S_{ij} (u_i w_j - u_j w_i) \leq \frac{M}{2} \sum_{i,j} |u_i w_j - u_j w_i|.
\]

The identity \(|a - b| \equiv a + b - 2 \min(a, b)| for \ a, b \geq 0| yields:

\[
\sum_{i,j} S_{ij} u_i w_j \leq \frac{M}{2} \left(\sum_{i,j} u_i w_j + u_j w_i - 2 \min\{u_i w_j, u_j w_i\} \right)
\]

\[
= M \left(1 - \sum_{i,j} \min\{u_i w_j, u_j w_i\} \right).
\]
Key lemma

Proof lemma.

\[\sum_{i,j} S_{ij} u_i w_j = \frac{1}{2} \sum_{i,j} S_{ij} (u_i w_j - u_j w_i) \leq \frac{M}{2} \sum_{i,j} |u_i w_j - u_j w_i|. \]

The identity \(|a - b| \equiv a + b - 2 \min(a, b)\) for \(a, b \geq 0\) yields:

\[\sum_{i,j} S_{ij} u_i w_j \leq \frac{M}{2} \left(\sum_{i,j} u_i w_j + u_j w_i - 2 \min\{u_i w_j, u_j w_i\} \right) \]

\[= M \left(1 - \sum_{i,j} \min\{u_i w_j, u_j w_i\} \right). \]

Restricting the sum only to the pairs of active entries ends the proof.
Proposition

Fix $\theta > 0$ and let $\lambda(\theta)$ be the number of agents in the global active set, $\Lambda(\theta)$. Then the diameters $d_X(t)$ and $d_V(t)$ satisfy,

$$\frac{d}{dt} d_X(t) \leq d_V(t)$$
$$\frac{d}{dt} d_V(t) \leq -\alpha \lambda^2(\theta) \theta^2 d_V(t).$$
Proposition

Fix $\theta > 0$ and let $\lambda(\theta)$ be the number of agents in the global active set, $\Lambda(\theta)$. Then the diameters $d_X(t)$ and $d_V(t)$ satisfy,

$$
\frac{d}{dt} d_X(t) \leq d_V(t) \\
\frac{d}{dt} d_V(t) \leq -\alpha \lambda^2(\theta) \theta^2 d_V(t).
$$

Proof. Remember:

$$
\frac{d}{dt} |\mathbf{v}_p - \mathbf{v}_q|^2 \leq 2 |\mathbf{v}_p - \mathbf{v}_q| (|\overline{\mathbf{v}}_p - \overline{\mathbf{v}}_q| - |\mathbf{v}_p - \mathbf{v}_q|)
$$
Proposition

Fix $\theta > 0$ and let $\lambda(\theta)$ be the number of agents in the global active set, $\Lambda(\theta)$. Then the diameters $d_X(t)$ and $d_V(t)$ satisfy,

\[
\frac{d}{dt} d_X(t) \leq d_V(t)
\]
\[
\frac{d}{dt} d_V(t) \leq -\alpha \lambda^2(\theta) \theta^2 d_V(t).
\]

Proof. Remember:

\[
\frac{d}{dt} |\mathbf{v}_p - \mathbf{v}_q|^2 \leq 2|\mathbf{v}_p - \mathbf{v}_q|(|\bar{\mathbf{v}}_p - \bar{\mathbf{v}}_q| - |\mathbf{v}_p - \mathbf{v}_q|)
\]

But:

\[
\bar{\mathbf{v}}_p - \bar{\mathbf{v}}_q = \sum_j a_{pj} \mathbf{v}_j - \bar{\mathbf{v}}_q = \sum_j a_{pj} (\mathbf{v}_j - \bar{\mathbf{v}}_q)
\]
Proposition

Fix $\theta > 0$ and let $\lambda(\theta)$ be the number of agents in the global active set, $\Lambda(\theta)$. Then the diameters $d_X(t)$ and $d_V(t)$ satisfy,

$$\frac{d}{dt} d_X(t) \leq d_V(t)$$
$$\frac{d}{dt} d_V(t) \leq -\alpha \lambda^2(\theta) \theta^2 d_V(t).$$

Proof. Remember:

$$\frac{d}{dt} |v_p - v_q|^2 \leq 2|v_p - v_q|(|v_p - \bar{v}_q| - |v_p - v_q|)$$

But:

$$\bar{v}_p - \bar{v}_q = \sum_j a_{pj} v_j - \bar{v}_q = \sum_j a_{pj} (v_j - \bar{v}_q)$$
$$= \sum_{i,j} a_{pj} a_{qi} (v_j - v_i) = \sum_{i,j} u_i w_j S_{ij}.$$
Applying the key lemma with $|S_{ij}| \leq |v_p - v_q|$ leads to:

$$\bar{v}_p - \bar{v}_q \leq |v_p - v_q|(1 - \lambda_{pq}(\theta)^2\theta^2),$$
Applying the key lemma with $|S_{ij}| \leq |\mathbf{v}_p - \mathbf{v}_q|$ leads to:

$$\mathbf{v}_p - \mathbf{v}_q \leq |\mathbf{v}_p - \mathbf{v}_q|(1 - \lambda_{pq}(\theta)^2 \theta^2),$$

for any $\theta > 0$ with $\lambda_{pq}(\theta)$ the number of “active entries”:

$$\lambda_{pq}(\theta) = \#\{j \mid a_{pj} \geq \theta \text{ and } a_{qj} \geq \theta\}.$$
Applying the key lemma with \(|S_{ij}| \leq |v_p - v_q| \) leads to:

\[
\bar{v}_p - \bar{v}_q \leq |v_p - v_q| (1 - \lambda_{pq}(\theta)^2 \theta^2),
\]

for any \(\theta > 0 \) with \(\lambda_{pq}(\theta) \) the number of “active entries”:

\[
\lambda_{pq}(\theta) = \# \{ j \mid a_{pj} \geq \theta \text{ and } a_{qj} \geq \theta \}.
\]

Therefore,

\[
\frac{d}{dt} |v_p - v_q|^2 \leq 2|v_p - v_q| (|\bar{v}_p - \bar{v}_q| - |v_p - v_q|)
\]

\[
\leq -2|v_p - v_q| \lambda_{pq}(\theta)^2 \theta^2 |v_p - v_q|.
\]

\(\square\)
Applying the key lemma with $|S_{ij}| \leq |v_p - v_q|$ leads to:

$$\bar{v}_p - \bar{v}_q \leq |v_p - v_q|(1 - \lambda_{pq}(\theta)^2 \theta^2),$$

for any $\theta > 0$ with $\lambda_{pq}(\theta)$ the number of “active entries”:

$$\lambda_{pq}(\theta) = \#\{j / a_{pj} \geq \theta \text{ and } a_{qj} \geq \theta\}.$$

Therefore,

$$\frac{d}{dt} |v_p - v_q|^2 \leq 2|v_p - v_q|(\bar{v}_p - \bar{v}_q - |v_p - v_q|) \leq -2|v_p - v_q|\lambda_{pq}(\theta)^2 \theta^2 |v_p - v_q|.$$

□

To conclude we need to find an appropriate θ for which we can count the number of active entries $\lambda_{pq}(\theta)$.
Theorem [M,Tadmor,2011]

If the influence function ϕ decays slowly enough:

$$
\int_0^{\infty} \phi^2(r) \, dr = +\infty,
$$

then the new model converges to a flock.
Theorem [M, Tadmor, 2011]

If the influence function ϕ decays slowly enough:

$$\int_0^\infty \phi^2(r) \, dr = +\infty,$$

then the new model converges to a flock.

Proof. 1) Take $\theta = \frac{\phi(dx)}{N}$. We have: $a_{ij} = \frac{\phi_{ij}}{\sum_k \phi_{ik}} \geq \frac{\phi(dx)}{N} = \theta$.

Sébastien Motsch (CSCAMM) Models of flocking with asymmetric interactions 15 July 2011 26/32
Theorem [M, Tadmor, 2011]

If the influence function ϕ decays slowly enough:

$$\int_0^\infty \phi^2(r) \, dr = +\infty,$$

then the new model converges to a flock.

Proof. 1) Take $\theta = \frac{\phi(dx)}{N}$. We have: $a_{ij} = \frac{\phi_{ij}}{\sum_k \phi_{ik}} \geq \frac{\phi(dx)}{N} = \theta$. Thus, $\lambda(\theta) = N$.

Sébastien Motsch (CSCAMM) Models of flocking with asymmetric interactions 15 July 2011 26/ 32
Theorem [M, Tadmor, 2011]

If the influence function \(\phi \) decays slowly enough:

\[
\int_0^\infty \phi^2(r) \, dr = +\infty,
\]

then the new model converges to a flock.

Proof. 1) Take \(\theta = \frac{\phi(dx)}{N} \). We have: \(a_{ij} = \frac{\phi_{ij}}{\sum_k \phi_{ik}} \geq \frac{\phi(dx)}{N} = \theta \).

Thus, \(\lambda(\theta) = N \). Applying the proposition gives:

\[
\dot{d_X}(t) \leq d_V(t) \quad , \quad \dot{d_V}(t) \leq -\alpha \phi^2(d_X(t)) \, d_V(t).
\]
Theorem [M,Tadmor,2011]

If the influence function ϕ decays slowly enough:

$$\int_0^\infty \phi^2(r) \, dr = +\infty,$$

then the new model converges to a flock.

Proof. 1) Take $\theta = \frac{\phi(dX)}{N}$. We have: $a_{ij} = \sum_k \frac{\phi_{ij}}{\phi_{ik}} \geq \frac{\phi(dX)}{N} = \theta$. Thus, $\lambda(\theta) = N$. Applying the proposition gives:

$$\dot{dX}(t) \leq dV(t), \quad \dot{dV}(t) \leq -\alpha \phi^2(dX(t)) \, dV(t).$$

2) Using $\mathcal{E}(dX,dV)(t) := dV(t) + \alpha \int_0^{dX(t)} \phi^2(s) \, ds$ [Ha-Liu]:

Sébastien Motsch (CSCAMM) Models of flocking with asymmetric interactions 15 July 2011 26/32
Theorem [M,Tadmor,2011]

If the influence function ϕ decays slowly enough:

$$\int_{0}^{\infty} \phi^2(r) \, dr = +\infty,$$

then the new model converges to a flock.

Proof. 1) Take $\theta = \frac{\phi(dX)}{N}$. We have: $a_{ij} = \sum_k \phi_{ik} \geq \frac{\phi(dX)}{N} = \theta$. Thus, $\lambda(\theta) = N$. Applying the proposition gives:

$$\dot{d}_X(t) \leq d_V(t), \quad \dot{d}_V(t) \leq -\alpha \phi^2(dX(t)) \, d_V(t).$$

2) Using $\mathcal{E}(d_X, d_V)(t) := d_V(t) + \alpha \int_{0}^{dX(t)} \phi^2(s) \, ds$ [Ha-Liu]:

\mathcal{E} decreasing in time
Theorem [M, Tadmor, 2011]

If the influence function ϕ decays slowly enough:

$$\int_{0}^{\infty} \phi^2(r) \, dr = +\infty,$$

then the new model converges to a flock.

Proof. 1) Take $\theta = \frac{\phi(dx)}{N}$. We have: $a_{ij} = \sum_k \phi_{ik} \geq \frac{\phi(dx)}{N} = \theta$. Thus, $\lambda(\theta) = N$. Applying the proposition gives:

$$\dot{d}_X(t) \leq d_V(t), \quad \dot{d}_V(t) \leq -\alpha \phi^2(d_X(t)) \, d_V(t).$$

2) Using $\mathcal{E}(d_X, d_V)(t) := d_V(t) + \alpha \int_{0}^{d_X(t)} \phi^2(s) \, ds$ [Ha-Liu]:

\mathcal{E} decreasing in time $\Rightarrow d_X(t)$ bounded
Theorem [M, Tadmor, 2011]

If the influence function ϕ decays slowly enough:

$$\int_0^{\infty} \phi^2(r) \, dr = +\infty,$$

then the new model converges to a flock.

Proof. 1) Take $\theta = \Phi(dX) / N$. We have: $a_{ij} = \frac{\phi_{ij}}{\sum_k \phi_{ik}} \geq \frac{\phi(dX)}{N} = \theta$. Thus, $\lambda(\theta) = N$. Applying the proposition gives:

$$\dot{d}_X(t) \leq d_V(t), \quad d_V(t) \leq -\alpha \phi^2(d_X(t)) \, d_V(t).$$

2) Using $\mathcal{E}(d_X, d_V)(t) := d_V(t) + \alpha \int_0^{d_X(t)} \phi^2(s) \, ds$ [Ha-Liu]:

\mathcal{E} decreasing in time $\Rightarrow d_X(t)$ bounded

$\Rightarrow d_V(t) \to 0$ expo. fast.
Outline

1. Introduction
2. The Cucker-Smale model
 - The model
 - Flocking for the C-S model
 - Drawbacks of the C-S model
 - A new model
3. Flocking for the new model
 - ℓ^∞ approach
 - Active sets
 - Convergence
4. Kinetic and macroscopic equations
 - Kinetic equation
 - Macroscopic equation
 - Convergence at the macroscopic level
5. Conclusion
Kinetic equation

Starting from the dynamical system,

\[
\frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = \frac{\alpha}{\sum_{k=1}^{N} \phi_{ik}} \sum_{j=1}^{N} \phi_{ij} (v_j - v_i),
\]
Kinetic equation

Starting from the dynamical system,

\[\frac{dx_i}{dt} = v_i, \quad \frac{d\mathbf{v}_i}{dt} = \frac{\alpha}{\sum_{k=1}^{N} \phi_{ik}} \sum_{j=1}^{N} \phi_{ij} (\mathbf{v}_j - \mathbf{v}_i), \]

we deduce that the distribution of particles \(f(t, x, v) \) satisfies:

\[\partial_t f + \mathbf{v} \cdot \nabla_x f + \nabla_v \cdot (F[f] f) = 0, \quad (3) \]
Starting from the dynamical system,

\[
\frac{d\mathbf{x}_i}{dt} = \mathbf{v}_i, \quad \frac{d\mathbf{v}_i}{dt} = \frac{\alpha}{\sum_{k=1}^{N} \phi_{ik}} \sum_{j=1}^{N} \phi_{ij} (\mathbf{v}_j - \mathbf{v}_i),
\]

we deduce that the distribution of particles \(f(t, \mathbf{x}, \mathbf{v}) \) satisfies:

\[
\partial_t f + \mathbf{v} \cdot \nabla_x f + \nabla_v \cdot (F[f] f) = 0,
\]

where the vector field \(F[f] \) is given by,

\[
F[f](\mathbf{x}, \mathbf{v}) := \alpha \frac{\int_{y,w} \phi(|y-x|) (w-v)f(y,w) \, dy \, dw}{\int_y \phi(|y-x|) \rho(y) \, dy}
\]

with \(\rho(y) = \int_w f(y,w) \, dw \).
Starting from the dynamical system,

$$\frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = \frac{\alpha}{\sum_{k=1}^{N} \phi_{ik}} \sum_{j=1}^{N} \phi_{ij} (v_j - v_i),$$

we deduce that the distribution of particles $f(t, x, v)$ satisfies:

$$\partial_t f + v \cdot \nabla_x f + \nabla_v \cdot (F[f] f) = 0,$$

where the vector field $F[f]$ is given by,

$$F[f](x, v) := \alpha \frac{\int_{y, w} \phi(|y-x|)(w-v)f(y, w) dy dw}{\int_y \phi(|y-x|) \rho(y) dy}$$

with $\rho(y) = \int_w f(y, w) dw$.

Remark. To derive rigorously the kinetic equation, once has to be careful that $F[f]$ is not lipschitz [Boissard,M. work in preparation].
Macroscopic equations

Integrating (3) against 1 and v yields:

$$\partial_t \rho + \nabla_x \cdot (\rho u) = 0 \quad \tag{4}$$

$$\partial_t (\rho u) + \nabla_x \cdot (\rho u \otimes u + P) = S(u), \quad \tag{5}$$
Macroscopic equations

Integrating (3) against 1 and v yields:

$$\partial_t \rho + \nabla_x \cdot (\rho u) = 0$$
$$\partial_t (\rho u) + \nabla_x \cdot (\rho u \otimes u + P) = S(u),$$

with

$$S(u)(x) = \alpha \frac{\int_y \phi(|y-x|) \rho(x) \rho(y) \left(u(y) - u(x)\right) dy}{\int_y \phi(|y-x|) \rho(y) dy}.$$

and P involving moment of order 2 of f.
Macroscopic equations

Integrating (3) against 1 and \(v \) yields:

\[
\begin{align*}
\partial_t \rho + \nabla_x \cdot (\rho u) &= 0 \quad (4) \\
\partial_t (\rho u) + \nabla_x \cdot (\rho u \otimes u + P) &= S(u), \quad (5)
\end{align*}
\]

with

\[
S(u)(x) = \alpha \frac{\int_y \phi(|y-x|)\rho(x)\rho(y)(u(y) - u(x)) \, dy}{\int_y \phi(|y-x|)\rho(y) \, dy}.
\]

and \(P \) involving moment of order 2 of \(f \).

To close the system, we suppose that \(f \) is a monophase distribution:

\[
f(x, v) = \rho(x)\delta_{u(x)}.
\]
Macroscopic equations

Integrating (3) against 1 and v yields:

\[
\begin{align*}
\partial_t \rho + \nabla_x \cdot (\rho u) &= 0 \\
\partial_t (\rho u) + \nabla_x \cdot (\rho u \otimes u) &= S(u),
\end{align*}
\]

with

\[
S(u)(x) = \alpha \frac{\int_y \phi(|y-x|) \rho(x) \rho(y) \left(u(y) - u(x) \right) dy}{\int_y \phi(|y-x|) \rho(y) dy}.
\]

and P involving moment of order 2 of f.

To close the system, we suppose that f is a monophase distribution:

\[
f(x, v) = \rho(x) \delta_{u(x)}.
\]

Under this assumption, $P = 0$.
Macroscopic equations

Hypothesis: Let \((\rho_0, u_0)\) an initial data compactly supported. We assume that the system (4,5) admits a unique smooth solution \((\rho(t), u(t))\) for all \(t \geq 0\).
Macroscopic equations

Hypothesis: Let \((\rho_0, u_0)\) an initial data compactly supported. We assume that the system (4,5) admits a unique smooth solution \((\rho(t), u(t))\) for all \(t \geq 0\).

Theorem [M,Tadmor,2011]

If the influence function \(\phi\) decays slowly enough:

\[
\int_0^\infty \phi^2(r) \, dr = +\infty,
\]

then the system (4,5) converges to a flock in the sense that:

\[
d_X(t) := \sup\{|x - y|, \ x, y \in \text{Supp}(\rho(t))\} \quad \text{is bounded}
\]

\[
d_V(t) := \sup\{|u(t, x) - u(t, y)|, \ x, y \in \text{Supp}(\rho(t))\} \quad \xrightarrow{t \to \infty} 0.
\]
Macroscopic equations

Hypothesis: Let \((\rho_0, u_0)\) an initial data compactly supported. We assume that the system (4,5) admits a unique smooth solution \((\rho(t), u(t))\) for all \(t \geq 0\).

Theorem [M, Tadmor, 2011]

If the influence function \(\phi\) decays slowly enough:

\[
\int_0^\infty \phi^2(r) \, dr = +\infty,
\]

then the system (4,5) converges to a flock in the sense that:

\[
d_X(t) := \sup \{|x - y|, \ x, y \in \text{Supp}(\rho(t))\} \quad \text{is bounded}
\]

\[
d_V(t) := \sup \{|u(t, x) - u(t, y)|, \ x, y \in \text{Supp}(\rho(t))\} \quad \lim_{t \to \infty} 0.
\]

Proof. We use that the decay of \(d_V\) at the particle level is independent of \(N\).
Outline

1 Introduction
2 The Cucker-Smale model
 - The model
 - Flocking for the C-S model
 - Drawbacks of the C-S model
 - A new model
3 Flocking for the new model
 - ℓ^∞ approach
 - Active sets
 - Convergence
4 Kinetic and macroscopic equations
 - Kinetic equation
 - Macroscopic equation
 - Convergence at the macroscopic level
5 Conclusion
Remarks.

- In contrast with the C-S model, we do NOT what will be the asymptotic velocity of the flock v_∞:
 \[\Rightarrow v_\infty \text{ 'emerges' from the dynamics.} \]
Remarks.

- In contrast with the C-S model, we do NOT what will be the asymptotic velocity of the flock v_∞:

$$\Rightarrow v_\infty \ 'emerges' \ from \ the \ dynamics.$$

- The condition for flocking is more restrictive than the C-S model: $\int \phi(r)^2 \, dr = \infty$ instead of $\int \phi(r) \, dr = \infty$ for the C-S model.
Remarks.

- In contrast with the C-S model, we do NOT what will be the asymptotic velocity of the flock v_∞:
 \[\Rightarrow v_\infty \ 'emerges' \text{ from the dynamics}. \]

- The condition for flocking is more restrictive than the C-S model: $\int \phi(r)^2\,dr = \infty$ instead of $\int \phi(r)\,dr = \infty$ for the C-S model.

Perspectives.

- Is there a flock when we only have: $\int \phi(r)\,dr = \infty$?
Remarks.

- In contrast with the C-S model, we do NOT what will be the asymptotic velocity of the flock v_∞:
 \[\Rightarrow v_\infty \text{ 'emerges' from the dynamics.} \]
- The condition for flocking is more restrictive than the C-S model: $\int \phi(r)^2 \, dr = \infty$ instead of $\int \phi(r) \, dr = \infty$ for the C-S model.

Perspectives.

- Is there a flock when we only have: $\int \phi(r) \, dr = \infty$?
- Find a ℓ^2 framework for the new model
Remarks.

- In contrast with the C-S model, we do NOT what will be the asymptotic velocity of the flock v_∞:

 \[\Rightarrow v_\infty \text{ \textit{'emerges'} from the dynamics.} \]

- The condition for flocking is more restrictive than the C-S model: $\int \phi(r)^2 dr = \infty$ instead of $\int \phi(r) dr = \infty$ for the C-S model.

Perspectives.

- Is there a flock when we only have: $\int \phi(r) dr = \infty$?
- Find a ℓ^2 framework for the new model
- Flocking with ϕ \textit{compactly supported}...