Mathematical modeling of self-organized dynamics: from microscopic to macroscopic description

Sébastien Motsch
CSCAMM, University of Maryland

joint work with: P. Degond, L. Navoret (IMT, Toulouse)
G. Theraulaz, J. Gautrais (CRCA, Toulouse)

UC Davis, Applied Math PDE Seminar
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PTW model</td>
</tr>
<tr>
<td>* Experiments and model</td>
</tr>
<tr>
<td>* Derivation of a diffusion equation</td>
</tr>
<tr>
<td>2 Vicsek model</td>
</tr>
<tr>
<td>* The model</td>
</tr>
<tr>
<td>* Derivation of a hyperbolic system</td>
</tr>
<tr>
<td>3 Numerical schemes</td>
</tr>
<tr>
<td>* Splitting method</td>
</tr>
<tr>
<td>* Particle simulations</td>
</tr>
<tr>
<td>* Micro vs macro</td>
</tr>
</tbody>
</table>
Motivation

- Individuals have only local interactions
- There is no leader inside the group (⇒ self-organization)
- The global organization of the group is at a much larger scale than the individual size

How can we connect individual and global dynamics?
Motivation

- Individuals have only local interactions
- There is no leader inside the group (⇒ self-organization)
- The global organization of the group is at a much larger scale than the individual size

How can we connect individual and global dynamics?
Motivation

- Individuals have only local interactions
- There is no leader inside the group (⇒ self-organization)
- The global organization of the group is at a much larger scale than the individual size

How can we connect individual and global dynamics?
Motivation

- Individuals have only local interactions
- There is no leader inside the group (⇒ *self-organization*)
- The global organization of the group is at a much larger scale than the individual size

How can we connect individual and global dynamics?
Motivation

- Individuals have only local interactions
- There is no leader inside the group (⇒ self-organization)
- The global organization of the group is at a much larger scale than the individual size

How can we connect individual and global dynamics?
Methodology

- Experiments, data recording
- Statistical analysis
- Individual Based Model (IBM)
- Identify the rules for individual behavior

- Kinetic equation
- Macroscopic equation
- Capture the global behavior of the system
Methodology

- Experiments, data recording
 - Statistical analysis
 - Individual Based Model (IBM)

- Macroscopic equation
 - Kinetic equation

Identify the rules for individual behavior
Capture the global behavior of the system
Methodology

- Experiments, data recording
- Statistical analysis
- Individual Based Model (IBM)
- Macroscopic equation
- Kinetic equation

Identify the rules for individual behavior | Capture the global behavior of the system
Outline

1 PTW model
 - Experiments and model
 - Derivation of a diffusion equation

2 Vicsek model
 - The model
 - Derivation of a hyperbolic system

3 Numerical schemes
 - Splitting method
 - Particle simulations
 - Micro vs macro
Experiments for fish

- The diameter of the basin is 4 meters
- Species studied: Kuhlia mugil (20-25 cm)

Video, data recorded
An example of trajectory:

- The norm of the velocity is constant
- The trajectory is smooth, the fish seems to turn constantly
An example of trajectory:

- The norm of the velocity is constant
- The trajectory is smooth, the fish seems to turn constantly
The model proposed is the following:

\[
\begin{align*}
 \frac{d\bar{x}}{dt} &= c\bar{\tau}(\theta) \\
 \frac{d\theta}{dt} &= c\kappa \\
 d\kappa &= -a\kappa\,dt + b\,dB_t
\end{align*}
\]

where \(c \) is the speed, \(a \) the inverse of a relaxation time, and \(b \) the intensity of diffusion.

We call this model “Persistent Turning Walker” (PTW)\(^1\).

\(^1\text{Gautrais et al., J. Math. Biol. (2009)}\)
The model proposed is the following:

\[
\frac{d\vec{x}}{dt} = c\vec{\tau}(\theta)
\]

\[
\frac{d\theta}{dt} = c\kappa
\]

\[
d\kappa = -a\kappa dt + b dB_t
\]

where \(c \) is the speed, \(a \) the inverse of a relaxation time, \(b \) the intensity of diffusion.

We call this model “Persistent Turning Walker” (PTW)\(^1\).

The model proposed is the following:

\[
\begin{align*}
\frac{d\vec{x}}{dt} &= c\vec{\tau}(\theta) \\
\frac{d\theta}{dt} &= c\kappa \\
\kappa &= -a\kappa dt + b dB_t
\end{align*}
\]

where \(c \) is the speed, \(a \) the inverse of a relaxation time, \(b \) the intensity of diffusion.

We call this model “Persistent Turning Walker” (PTW).\(^1\)

The model proposed is the following:

\[
\begin{align*}
\frac{d\vec{x}}{dt} &= c\vec{\tau}(\theta) \\
\frac{d\theta}{dt} &= c\kappa \\
\frac{d\kappa}{dt} &= -a\kappa \, dt + b \, dB_t
\end{align*}
\]

where \(c \) is the speed, \(a \) the inverse of a relaxation time, \(b \) the intensity of diffusion.

We call this model “Persistent Turning Walker” (PTW)\(^1\).

The model proposed is the following:

\[
\begin{align*}
\frac{d\vec{x}}{dt} &= c\vec{\tau}(\theta) \\
\frac{d\theta}{dt} &= c\kappa \\
\frac{d\kappa}{dt} &= -a\kappa \, dt + b \, dB_t
\end{align*}
\]

where \(c \) is the speed, \(a \) the inverse of a relaxation time, \(b \) the intensity of diffusion.

We call this model “Persistent Turning Walker” (PTW)\(^1\).

Comparison Data and Model

Experiment

Simulation (PTW model)
Derivation of a diffusion equation

To analyze the large scale dynamics of the PTW model, it is more convenient to manipulate the density distribution of particles $f(t, x, \theta, \kappa)$.

PTW model

\[
\begin{align*}
\frac{d\bar{x}}{dt} &= \bar{\tau}(\theta) \\
\frac{d\theta}{dt} &= \kappa \\
\frac{d\kappa}{dt} &= -\kappa \, dt + \sqrt{2\alpha} \, dB_t
\end{align*}
\]

(in scaled variables)

Kinetic equation

\[
\partial_t f + \bar{\tau} \cdot \nabla_{\bar{x}} f
\]

with

\[
Lf = -\kappa \partial_\theta f + \partial_\kappa (\kappa f) + \alpha^2 \partial_{\kappa^2} f
\]
To analyze the large scale dynamics of the PTW model, it is more convenient to manipulate the density distribution of particles $f(t, x, \theta, \kappa)$.

PTW model

$$\frac{d \bar{x}}{dt} = \bar{\tau}(\theta)$$

$$\frac{d \theta}{dt} = \kappa$$

$$d\kappa = -\kappa dt + \sqrt{2\alpha} dB_t$$

(in scaled variables)

Kinetic equation

$$\partial_t f + \bar{\tau} \cdot \nabla_x f$$

with

$$Lf = -\kappa \partial_\theta f + \partial_\kappa (\kappa f) + \alpha^2 \partial_{\kappa^2} f$$
Derivation of a diffusion equation

To analyze the large scale dynamics of the PTW model, it is more convenient to manipulate the density distribution of particles $f(t, x, \theta, \kappa)$.

PTW model

\[
\begin{align*}
\frac{d\vec{x}}{dt} &= \vec{\tau}(\theta) \\
\frac{d\theta}{dt} &= \kappa \\
d\kappa &= -\kappa dt + \sqrt{2\alpha} dB_t
\end{align*}
\]

(in scaled variables)

Kinetic equation

\[
\partial_t f + \vec{\tau} \cdot \nabla_x f + \kappa \partial_\theta f - \partial_\kappa (\kappa f) = \alpha^2 \partial_{\kappa^2} f
\]

with

\[
Lf = -\kappa \partial_\theta f + \partial_\kappa (\kappa f) + \alpha^2 \partial_{\kappa^2} f
\]
Derivation of a diffusion equation

To analyze the large scale dynamics of the PTW model, it is more convenient to manipulate the density distribution of particles $f(t, x, \theta, \kappa)$.

PTW model

\[
\begin{align*}
\frac{d\bar{x}}{dt} &= \bar{\tau}(\theta) \\
\frac{d\theta}{dt} &= \kappa \\
\frac{d\kappa}{dt} &= -\kappa \, dt + \sqrt{2\alpha} \, dB_t
\end{align*}
\]

(in scaled variables)

Kinetic equation

\[
\partial_t f + \bar{\tau} \cdot \nabla_{\bar{x}} f = Lf
\]

with

\[
Lf = -\kappa \partial_\theta f + \partial_\kappa (\kappa f) + \alpha^2 \partial_{\kappa^2} f
\]
Derivation of a macroscopic model

- **Step 1. Diffusive scaling**: \(t' = \varepsilon^2 t, \ x' = \varepsilon x \).

 In these ***macroscopic*** variables, \(f^\varepsilon \) satisfies:

 \[
 \varepsilon \partial_t f^\varepsilon + \vec{\tau} \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} L(f^\varepsilon).
 \]

- **Step 2. Hilbert expansion**: \(f^\varepsilon = f^0 + \varepsilon f^1 + ... \)

 \(L f^0 = 0 \) \(\Rightarrow \) \(f^0 = \rho^0(x) e^{\frac{\theta^2}{2\sigma^2}} \) (equilibrium)

 with \(N^\theta \) a Gaussian with zero mean and variance \(\sigma^2 \).

- **Step 3. Integrate in (\(\theta, \kappa \))**:

 \[
 \int_{\theta,\kappa} \left(\varepsilon \partial_t f^\varepsilon + \vec{\tau} \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} L(f^\varepsilon) \right) d\theta d\kappa.
 \]
Derivation of a macroscopic model

- **Step 1. Diffusive scaling:** \(t' = \varepsilon^2 t, \ x' = \varepsilon x \).

 In these *macroscopic* variables, \(f^\varepsilon \) satisfies:

 \[
 \varepsilon \partial_t f^\varepsilon + \vec{\tau} \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} L(f^\varepsilon).
 \]

- **Step 2. Hilbert expansion:** \(f^\varepsilon = f^0 + \varepsilon f^1 + ... \)

 \(Lf^0 = 0 \quad \Rightarrow \quad f^0 = \rho^0(x) \frac{N(\kappa)}{2\pi} \) (equilibrium)

 with \(N \) a Gaussian with zero mean and variance \(\alpha^2 \).

- **Step 3. Integrate in \((\theta, \kappa)\):**

 \[
 \int_{\theta, \kappa} \left(\varepsilon \partial_t f^\varepsilon + \vec{\tau} \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} L(f^\varepsilon) \right) \, d\theta \, d\kappa.
 \]
Derivation of a macroscopic model

- **Step 1. Diffusive scaling:** \(t' = \epsilon^2 t, \ x' = \epsilon x \).

 In these *macroscopic* variables, \(f^{\epsilon} \) satisfies:

 \[
 \epsilon \partial_t f^{\epsilon} + \vec{\tau} \cdot \nabla_x f^{\epsilon} = \frac{1}{\epsilon} L(f^{\epsilon}).
 \]

- **Step 2. Hilbert expansion:** \(f^{\epsilon} = f^0 + \epsilon f^1 + \ldots \)

 \[
 L f^0 = 0 \quad \Rightarrow \quad f^0 = \rho^0(x) \frac{\mathcal{N}(\kappa)}{2\pi} \quad (equilibrium)
 \]

 with \(\mathcal{N} \) a Gaussian with zero mean and variance \(\alpha^2 \).

- **Step 3. Integrate in \((\theta, \kappa)\):**

 \[
 \int_{\theta, \kappa} \left(\epsilon \partial_t f^{\epsilon} + \vec{\tau} \cdot \nabla_x f^{\epsilon} = \frac{1}{\epsilon} L(f^{\epsilon}) \right) d\theta d\kappa.
 \]
Derivation of a macroscopic model

- **Step 1.** *Diffusive scaling:* \(t' = \varepsilon^2 t, \ x' = \varepsilon x. \)
 In these *macroscopic* variables, \(f^\varepsilon \) satisfies:

 \[
 \varepsilon \partial_t f^\varepsilon + \vec{\tau} \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} L(f^\varepsilon). \tag{1}
 \]

- **Step 2.** *Hilbert expansion:* \(f^\varepsilon = f^0 + \varepsilon f^1 + \ldots \)
 \[
 Lf^0 = 0 \quad \Rightarrow \quad f^0 = \rho^0(\mathbf{x}) \frac{N(\kappa)}{2\pi} \quad \text{(equilibrium)}
 \]
 with \(N \) a Gaussian with zero mean and variance \(\alpha^2 \).

- **Step 3.** *Integrate in \((\theta, \kappa)\):*

 \[
 \int_{\theta, \kappa} \left(\varepsilon \partial_t f^\varepsilon + \vec{\tau} \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} L(f^\varepsilon) \right) d\theta d\kappa.
 \]
Derivation of a macroscopic model

- **Step 1.** *Diffusive scaling:* \(t' = \varepsilon^2 t, \ x' = \varepsilon x. \)

 In these *macroscopic* variables, \(f^\varepsilon \) satisfies:

 \[
 \varepsilon \partial_t f^\varepsilon + \vec{\tau} \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} L(f^\varepsilon). \tag{1}
 \]

- **Step 2.** *Hilbert expansion:* \(f^\varepsilon = f^0 + \varepsilon f^1 + ... \)

 \[Lf^0 = 0 \quad \Rightarrow \quad f^0 = \rho^0(x) \frac{\mathcal{N}(\kappa)}{2\pi} \quad (equilibrium) \]

 with \(\mathcal{N} \) a Gaussian with zero mean and variance \(\alpha^2. \)

- **Step 3.** *Integrate in* \((\theta, \kappa)\):

 \[
 \int_{\theta, \kappa} \left(\varepsilon \partial_t f^\varepsilon + \vec{\tau} \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} L(f^\varepsilon) \right) \, d\theta \, d\kappa.
 \]
The distribution f^ε solution of (1) satisfies:

$$f^\varepsilon \xrightarrow{\varepsilon \rightarrow 0} \rho^0 \frac{\mathcal{N}(\kappa)}{2\pi},$$

with:

$$\partial_t \rho^0 + \nabla \cdot J^0 = 0,$$

$$J^0 = -D \nabla \rho^0,$$

where $D = \int_0^\infty \exp\left(-\alpha^2(1+s+e^{-s})\right) ds$.

Probabilistic point of view.

$$= x_0 + \int_0^\infty \cos(\theta_s) ds \xrightarrow{\varepsilon \rightarrow 0} 0 + D \beta.$$
Diffusion equation

Thm.\(^2\) The distribution \(f^\varepsilon\) solution of (1) satisfies:

\[
f^\varepsilon \xrightarrow{\varepsilon \to 0} \rho^0 \frac{\mathcal{N}(\kappa)}{2\pi},
\]

with:

\[
\partial_t \rho^0 + \nabla \bar{x} \cdot J^0 = 0,
\]

\[
J^0 = -D \nabla \bar{x} \rho^0,
\]

where \(D = \int_{0}^{\infty} \exp(-\alpha^2(-1+s+e^{-s})) \, ds\).

Probabilistic point of view.

\[
= x_0 + \int_{0}^{\infty} \cos(\theta_s) \, ds \quad \xrightarrow{\varepsilon \to 0} \quad 0 \quad + \quad 0 \quad \beta.
\]

\(^2\)Degond, M., J. Stat. Phys. ,

\(\square\)
Thm. The distribution f^ϵ solution of (1) satisfies:

$$f^\epsilon \xrightarrow{\epsilon \to 0} \rho^0 \frac{\mathcal{N}(\kappa)}{2\pi},$$

with:

$$\mathcal{D} = \int_0^\infty \exp -\alpha^2(-1+s+e^{-s}) \, ds.$$
Thm.² The distribution f^ε solution of (1) satisfies:

$$f^\varepsilon \xrightarrow{\varepsilon \to 0} \rho^0 \frac{\mathcal{N}(\kappa)}{2\pi},$$

with:

$$\partial_t \rho^0 + \nabla \vec{x} \cdot J^0 = 0,$$

$$J^0 = -\mathcal{D} \nabla \vec{x} \rho^0,$$

where $\mathcal{D} = \int_0^\infty \exp(-\alpha^2(-1+s+e^{-s})) \, ds$.

Probabilistic point of view.

$$x(t) = x_0 + \int_0^t \cos(\theta_s) \, ds \quad \xrightarrow{\varepsilon \to 0} \quad 0 \quad + \quad D \tilde{B}_{t'}$$

Thm.\(^2\) The distribution \(f^\varepsilon\) solution of (1) satisfies:

\[
\lim_{\varepsilon \to 0} f^\varepsilon \rightarrow \rho^0 \frac{\mathcal{N}(\kappa)}{2\pi},
\]

with:

\[
\begin{align*}
\text{Diffusion equation} \\
\partial_t \rho^0 + \nabla \cdot J^0 &= 0, \\
J^0 &= -D \nabla \tilde{x} \rho^0,
\end{align*}
\]

where \(D = \int_0^\infty \exp^{-\alpha^2(-1+s+e^{-s})} \, ds\).

Probabilistic point of view.

\[
\begin{align*}
\chi^\varepsilon(t') &= \varepsilon x_0 + \varepsilon \int_0^{t'/\varepsilon^2} \cos(\theta_s) \, ds \\
&\xrightarrow{\varepsilon \to 0} 0 + D \tilde{B}_{t'}.
\end{align*}
\]

Diffusion equation

Thm. The distribution \(f^\varepsilon \) solution of (1) satisfies:

\[
 f^\varepsilon \xrightarrow{\varepsilon \to 0} \rho^0 \frac{\mathcal{N}(\kappa)}{2\pi},
\]

with:

\[
 \partial_t \rho^0 + \nabla \cdot J^0 = 0,
\]

\[
 J^0 = -D \nabla \rho^0,
\]

where \(D = \int_0^\infty \exp(-\alpha^2(-1+s+e^{-s})) \, ds \).

Probabilistic point of view.

\[
 x^\varepsilon(t') = \varepsilon x_0 + \varepsilon \int_0^{t'/\varepsilon^2} \cos(\theta_s) \, ds \xrightarrow{\varepsilon \to 0} 0 + D \tilde{B}_{t'}
\]

Illustration: one trajectory $\vec{x}(t)$

$T=20$ (epsilon=1)
Illustration: one trajectory $\vec{x}(t)$

![Graph](attachment:image.png)
Illustration: one trajectory $\vec{x}(t)$
Illustration: one trajectory $\vec{x}(t)$

$T=200$ (epsilon=0.1)
Illustration: one trajectory $\vec{x}(t)$
Illustration: one trajectory $\vec{x}(t)$
Illustration: one trajectory $\vec{x}(t)$
Fish in interaction

- In group, fish are usually aligned
- To measure this effect, we observe the velocity of the neighbors in the frame of reference of one fish:
Fish in interaction

- In group, fish are usually **aligned**
- To measure this effect, we observe the velocity of the neighbors in the frame of reference of one fish:
Fish in interaction

- In group, fish are usually aligned
- To measure this effect, we observe the velocity of the neighbors in the frame of reference of one fish:

\[\vec{v}_1 \]
\[\vec{v}_2 \]

\[P_1 \]
\[P_2 \]
Fish in interaction

- In group, fish are usually aligned
- To measure this effect, we observe the velocity of the neighbors in the frame of reference of one fish:

\[\vec{v}_1 \quad \vec{v}_2 \]

Experimental data
Fish in interaction

- In group, fish are usually aligned
- To measure this effect, we observe the velocity of the neighbors in the frame of reference of one fish:

\[
\vec{v}_1 \quad \vec{v}_2
\]

Experimental data
Fish in interaction

Classical model with 3 zones

- attraction
- alignment
- repulsive
Fish in interaction

Classical model with 3 zones

Ref.: Aoki (1982), Reynolds (1986),
Huth-Wissel (1992), Couzin et al. (2002),...
Fish in interaction

Classical model with 3 zones

Outline

1. PTW model
 - Experiments and model
 - Derivation of a diffusion equation

2. Vicsek model
 - The model
 - Derivation of a hyperbolic system

3. Numerical schemes
 - Splitting method
 - Particle simulations
 - Micro vs macro
Vicsek model ('95)

Discrete dynamics:

\[
\begin{align*}
 x_i^{n+1} &= x_i^n + \Delta t \omega_i^n \\
 \omega_i^{n+1} &= \overline{\Omega}_i^n + \epsilon
\end{align*}
\]

with \(\overline{\Omega}_i^n = \frac{\sum |x_j - x_i| < R \omega_j^n}{\sum |x_j - x_i| < R \omega_j^n} \), \(\epsilon \) noise.

Continuous dynamics:

\[
\begin{align*}
 \frac{dx_i}{dt} &= \omega_i \\
 d\omega_i &= (\text{Id} - \omega_i \otimes \omega_i)(\nu \overline{\Omega}_i dt + \sqrt{2D} dB_t)
\end{align*}
\]

Remark. eq. (3) + “\(\nu \Delta t = 1 \)” \(\Rightarrow \) eq. (2)
Vicsek model ('95)

Discrete dynamics:

\[
\begin{align*}
 x_i^{n+1} &= x_i^n + \Delta t \omega_i^n \\
 \omega_i^{n+1} &= \Omega_i^n + \epsilon
\end{align*}
\]

with \(\Omega_i^n = \frac{\sum |x_j - x_i| < R \omega_j^n}{\sum |x_j - x_i| < R \omega_j^n} \), \(\epsilon \) noise.

Continuous dynamics:

\[
\begin{align*}
 \frac{dx_i}{dt} &= \omega_i \\
 d\omega_i &= (\text{Id} - \omega_i \otimes \omega_i)(\nu \Omega_i \ dt + \sqrt{2D} \ dB_t)
\end{align*}
\]

Remark. eq. (3) + “\(\nu \Delta t = 1 \)” \(\Rightarrow \) eq. (2)
Vicsek model ('95)

Discrete dynamics:

\[x_{i}^{n+1} = x_{i}^{n} + \Delta t \omega_{i}^{n} \]

\[\omega_{i}^{n+1} = \Omega_{i}^{n} + \epsilon \]

with \(\Omega_{i}^{n} = \frac{\sum|x_{j} - x_{i}| < R \omega_{j}^{n}}{\sum|x_{j} - x_{i}| < R \omega_{j}^{n}} \), \(\epsilon \) noise.

Continuous dynamics:

\[\frac{dx_{i}}{dt} = \omega_{i} \]

\[d\omega_{i} = (\text{Id} - \omega_{i} \otimes \omega_{i})(\nu \Omega_{i} dt + \sqrt{2D} dB_{t}) \]

Remark. eq. (3) + “\(\nu \Delta t = 1 \)” \(\Rightarrow \) eq. (2)
Particles at $t = 10.00$

Density and velocity at $t = 10.00$
Kinetic equation

Under the *hypothesis of propagation of chaos* \(^3\), the density of particles \(f(t, x, \omega)\) satisfies:

\[
\partial_t f + \omega \cdot \nabla_x f + \nabla_\omega \cdot (Ff) = D \Delta_\omega f,
\]

with:

\[
F(x, \omega) = (\text{Id} - \omega \otimes \omega) \nu \Omega(x), \quad \Omega(x) = \frac{J(x)}{|J(x)|}
\]

\[
J(x) = \int_{|y-x|<R, \omega^* \in S^1} \omega^* f(y, \omega^*) \, dy \, d\omega^*
\]

- The alignment is expressed by the operator \(\nabla_\omega \cdot Ff\),
- The randomness is expressed by \(D \Delta_\omega f\).

\(^3\)Sznitman, Saint-Flour (89)
Kinetic equation

Under the hypothesis of propagation of chaos\(^3\), the density of particles \(f(t,x,\omega)\) satisfies:

\[
\partial_t f + \omega \cdot \nabla_x f + \nabla_\omega \cdot (F f) = D\Delta_\omega f,
\]

with:

\[
F(x,\omega) = (\text{Id} - \omega \otimes \omega) \nu \bar{\Omega}(x), \quad \bar{\Omega}(x) = \frac{J(x)}{|J(x)|}
\]

\[
J(x) = \int_{|y-x|<R, \omega^* \in \mathbb{S}^1} \omega^* f(y,\omega^*) \, dy \, d\omega^*
\]

- The alignment is expressed by the operator \(\nabla_\omega \cdot Ff\),
- The randomness is expressed by \(D\Delta_\omega f\).

\(^3\text{Sznitman, Saint-Flour (89)}\)
Kinetic equation

Under the *hypothesis of propagation of chaos*\(^3\), the density of particles \(f(t, x, \omega) \) satisfies:

\[
\partial_t f + \omega \cdot \nabla_x f + \nabla_\omega \cdot (Ff) = D\Delta_\omega f,
\]

with:

\[
F(x, \omega) = (\text{Id} - \omega \otimes \omega) \nu \Omega(x), \quad \Omega(x) = \frac{J(x)}{|J(x)|},
\]

\[
J(x) = \int_{|y-x|<R, \omega^* \in S^1} \omega^* f(y, \omega^*) \, dy \, d\omega^*
\]

- The **alignment** is expressed by the operator \(\nabla_\omega \cdot Ff \),
- The **randomness** is expressed by \(D\Delta_\omega f \).

\(^3\text{Sznitman}, \text{Saint-Flour (89)}\)
Kinetic equation

Finally, f satisfies:

\begin{equation}
\partial_t f + \omega \cdot \nabla_x f = Q(f)
\end{equation}

with: $Q(f) = -\nabla_\omega \cdot (Ff) + D \Delta_\omega f$.

- The equilibrium of $Q(f)$ (i.e. $Qf = 0$) are the Von Mises distributions:

\[M_\Omega(\omega) = C \exp \left(\frac{\omega \cdot \Omega}{T} \right) \]

where $T = D/\nu$ and Ω is an arbitrary direction.

- The total momentum is not preserved by the operator:

\[\int_\omega Q(f)\omega \, d\omega \neq 0. \]
Finally, f satisfies:

$$\partial_t f + \omega \cdot \nabla_x f = Q(f)$$

with:

$$Q(f) = -\nabla_\omega \cdot (Ff) + D \Delta_\omega f.$$

- The *equilibrium* of $Q(f)$ (i.e. $Qf = 0$) are the Von Mises distributions:

$$M_\Omega(\omega) = C \exp \left(\frac{\omega \cdot \Omega}{T} \right)$$

where $T = D/\nu$ and Ω is an arbitrary direction.

- The *total momentum* is not preserved by the operator:

$$\int_\omega Q(f) \omega \, d\omega \neq 0.$$
Kinetic equation

Finally, f satisfies:

\[
\partial_t f + \omega \cdot \nabla_x f = Q(f)
\] \hspace{2cm} (4)

with: $Q(f) = -\nabla_\omega \cdot (Ff) + D \Delta_\omega f$.

- The *equilibrium* of $Q(f)$ (i.e. $Qf = 0$) are the Von Mises distributions:
 \[
 \mathcal{M}_\Omega(\omega) = C \exp \left(\frac{\omega \cdot \Omega}{T} \right)
 \]
 where $T = D/\nu$ and Ω is an arbitrary direction.

- The *total momentum* is **not** preserved by the operator:
 \[
 \int_\omega Q(f)\omega \, d\omega \neq 0.
 \]
Figure: *Local* distribution of velocity f *(Left)* for a simulation in a *small* domain *(Right).*
Derivation of a hyperbolic system

- **Step 1.** *Hydrodynamic scaling:* \(t' = \varepsilon t, \; x' = \varepsilon x \).

 In these macroscopic variables, \(f^{\varepsilon} \) satisfies:

 \[
 \partial_t f^{\varepsilon} + \omega \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon} Q(f^{\varepsilon}).
 \]
 \((5) \)

- **Step 2.** Hilbert expansion: \(f^{\varepsilon} = f^0 + \varepsilon f^1 + ... \)

 \(\Rightarrow f^0 \) is an equilibrium: \(f^0(x, \omega) = \rho^0(x) M_{\omega}(\rho^0(\omega)) \)

- **Step 3.** Integrate (5) against the collisional invariants

 \[
 \int_{\omega} \left[\partial_t f^{\varepsilon} + \omega \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon} Q(f^{\varepsilon}) \right] \psi \; d\omega
 \]

 with \(\psi \) such that \(\int_{\omega} Q(f) \psi \; d\omega = 0 \).
Derivation of a hyperbolic system

- **Step 1.** *Hydrodynamic scaling*: \(t' = \varepsilon t, \ x' = \varepsilon x \). In these macroscopic variables, \(f^\varepsilon \) satisfies:

\[
\partial_t f^\varepsilon + \omega \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon).
\] (5)

- **Step 2.** Hilbert expansion: \(f^\varepsilon = f^0 + \varepsilon f^1 + ... \)

\[\Rightarrow f^0 \text{ is an equilibrium}: f^0(x, \omega) = \rho^0(x) M_{\Omega^0(x)}(\omega).\]

- **Step 3.** Integrate (5) against the *collisional invariants*

\[
\int_\omega \left[\partial_t f^\varepsilon + \omega \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon) \right] \psi \, d\omega
\]

with \(\psi \) such that \(\int_\omega Q(f) \psi \, d\omega = 0 \).
Step 1. *Hydrodynamic scaling:* $t' = \varepsilon t$, $x' = \varepsilon x$.

In these macroscopic variables, f^ε satisfies:

$$\partial_t f^\varepsilon + \omega \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon). \quad (5)$$

Step 2. Hilbert expansion: $f^\varepsilon = f^0 + \varepsilon f^1 + \ldots$

$\Rightarrow f^0$ is an equilibrium: $f^0(x, \omega) = \rho^0(x) M_{\Omega^0(x)}(\omega)$.

Step 3. Integrate (5) against the collisional invariants

$$\int_\omega \left[\partial_t f^\varepsilon + \omega \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon) \right] \psi \, d\omega$$

with ψ such that $\int_\omega Q(f) \psi \, d\omega = 0$.
Derivation of a hyperbolic system

- **Step 1.** *Hydrodynamic scaling:* \(t' = \varepsilon t, \ x' = \varepsilon x. \)

 In these macroscopic variables, \(f^\varepsilon \) satisfies:

 \[
 \partial_t f^\varepsilon + \mathbf{\omega} \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon).
 \] \hspace{1cm} (5)

- **Step 2.** Hilbert expansion: \(f^\varepsilon = f^0 + \varepsilon f^1 + \ldots \)

 \Rightarrow \(f^0 \) is an equilibrium: \(f^0(x, \mathbf{\omega}) = \rho^0(x) M_{\Omega^0(x)}(\mathbf{\omega}). \)

- **Step 3.** Integrate (5) against the collisional invariants

 \[
 \int_\omega \left[\partial_t f^\varepsilon + \mathbf{\omega} \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon) \right] \psi \, d\omega
 \]

 with \(\psi \) such that \(\int_\omega Q(f) \psi \, d\omega = 0. \)
Derivation of a hyperbolic system

- Step 1. *Hydrodynamic scaling:* \(t' = \varepsilon t, \ x' = \varepsilon x \).
In these macroscopic variables, \(f^\varepsilon \) satisfies:

\[
\partial_t f^\varepsilon + \omega \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon) .
\]

(5)

- Step 2. Hilbert expansion: \(f^\varepsilon = f^0 + \varepsilon f^1 + \ldots \)

\(\Rightarrow f^0 \) is an equilibrium: \(f^0(x, \omega) = \rho^0(x)M_{\Omega^0(x)}(\omega) \).

- Step 3. Integrate (5) against the *collisional invariants*

\[
\int_{\omega} \left[\partial_t f^\varepsilon + \omega \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon) \right] \psi \ d\omega
\]

with \(\psi \) such that \(\int_{\omega} Q(f) \psi \ d\omega = 0 \).
Problem: Only one quantity is preserved by Q.

Momentum is not preserved by the dynamics

Def. ψ is a if for every f satisfying $\int_\Omega f \psi d\omega / / 0$

$\int_\omega Q(f)\psi d\omega = 0 \Rightarrow \int_\omega f Q^*_\Omega(\psi) d\omega = 0 \Rightarrow \psi = \{\varphi_{\Omega^c}^\prime(\omega)\}$

with φ_{Ω} a solution of: $Q^*(\varphi_{\Omega}) = \omega \times \Omega$.

Then, we can integrate the kinetic equation:

$\int_\omega \left[\partial_t f^\varepsilon + \omega \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon) \right] \left(\frac{1}{\varphi_{\Omega^c}(\omega)} \right) d\omega$
Problem: Only one quantity is preserved by Q.

Momentum is not preserved by the dynamics

Def. ψ is a collisional invariant if for every f satisfying

$$\int_{\omega} \omega f \, d\omega = 0 \quad \Rightarrow \quad \int_{\omega} f \, Q^*_\omega(\psi) \, d\omega = 0 \quad \Rightarrow \quad \psi = \begin{cases} 1 \\
\varphi_{\Omega}(\omega) \end{cases}$$

with φ_Ω a solution of: $Q^*(\varphi_\Omega) = \omega \times \Omega$.

Then, we can integrate the kinetic equation:

$$\int_{\omega} \left[\partial_t f^\varepsilon + \omega \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon) \right] \left(\begin{array}{c} 1 \\
\varphi_{\Omega^\varepsilon}(\omega) \end{array} \right) \, d\omega$$
Derivation of a hyperbolic system

Problem: Only one quantity is preserved by Q.

Momentum is not preserved by the dynamics

Def. ψ is a collisional invariant if for every f satisfying

$$\int_\Omega \omega f \, d\omega = 0 \quad \Rightarrow \quad \int_\Omega f \, Q^*_f(\psi) \, d\omega = 0 \quad \Rightarrow \quad \psi = \left\{ \begin{array}{l} 1 \\ \varphi_\Omega(\omega) \end{array} \right.$$

with φ_Ω a solution of: $Q^*(\varphi_\Omega) = \omega \times \Omega$.

Then, we can integrate the kinetic equation:

$$\int_\omega \left[\partial_t f^\varepsilon + \omega \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon) \right] \left(\begin{array}{l} 1 \\ \varphi_{\Omega^\varepsilon}(\omega) \end{array} \right) \, d\omega$$
Derivation of a hyperbolic system

Problem: Only one quantity is preserved by Q.

Momentum is not preserved by the dynamics

Def. ψ is a collisional invariant if for every f satisfying

$$
\int_{\omega} \omega f \, d\omega \parallel \Omega
$$

$$
\int_{\omega} Q(f) \psi \, d\omega = 0 \quad \Rightarrow \quad \int_{\omega} f \, Q_{\Omega f}^*(\psi) \, d\omega = 0 \quad \Rightarrow \quad \psi = 1 \left\{ \frac{1}{\varphi_{\Omega}(\omega)} \right\}
$$

with φ_{Ω} a solution of: $Q^*(\varphi_{\Omega}) = \omega \times \Omega$.

Then, we can integrate the kinetic equation:

$$
\int_{\omega} [\partial_t f^\varepsilon + \omega \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon)] \left(\frac{1}{\varphi_{\Omega^\varepsilon}(\omega)} \right) \, d\omega
$$
Derivation of a hyperbolic system

Problem: Only one quantity is preserved by Q.

Momentum is not preserved by the dynamics

Def. ψ is a collisional invariant if for every f satisfying

$$\int_\omega \omega f \, d\omega \parallel \Omega$$

$$\int_\omega Q(f) \psi \, d\omega = 0 \quad \Rightarrow \quad \int_\omega f \, Q_{\Omega f}^*(\psi) \, d\omega = 0 \quad \Rightarrow \quad \psi = 1 \left\{ \begin{array}{c} 1 \\
\phi_{\Omega}(\omega) \end{array} \right.$$

with ϕ_{Ω} a solution of: $Q^*(\phi_{\Omega}) = \omega \times \Omega$.

Then, we can integrate the kinetic equation:

$$\int_\omega \left[\frac{\partial}{\partial t} f^\varepsilon + \omega \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon) \right] \left(\begin{array}{c} 1 \\
\phi_{\Omega}^\varepsilon(\omega) \end{array} \right) \, d\omega$$
Derivation of a hyperbolic system

Problem: Only one quantity is preserved by Q.

Momentum is not preserved by the dynamics

Def. ψ is a collisional invariant if for every f satisfying
\[
\int_\omega \omega f \, d\omega \parallel \Omega
\]

\[
\int_\omega Q(f) \psi \, d\omega = 0 \quad \Rightarrow \quad \int_\omega f \, Q^*_\Omega f(\psi) \, d\omega = 0 \quad \Rightarrow \quad \psi = \left\{ \frac{1}{\varphi_\Omega(\omega)} \right\}
\]
with φ_Ω a solution of: $Q^*(\varphi_\Omega) = \omega \times \Omega$.

Then, we can integrate the kinetic equation:

\[
\int_\omega \left[\partial_t f^\varepsilon + \omega \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon) \right] \left(\frac{1}{\varphi_\Omega^\varepsilon(\omega)} \right) \, d\omega
\]
Derivation of a hyperbolic system

Problem: Only one quantity is preserved by Q.

Momentum is not preserved by the dynamics

Def. ψ is a collisional invariant if for every f satisfying
\[
\int_\omega \omega f \, d\omega = 0 \Rightarrow \int_\omega f \, Q_{\Omega f}^*(\psi) \, d\omega = 0 \Rightarrow \psi = \begin{cases} 1 \\
\varphi_{\Omega}(\omega) \end{cases}
\]

with φ_{Ω} a solution of: $Q^*(\varphi_{\Omega}) = \omega \times \Omega$.

Then, we can integrate the kinetic equation:
\[
\int_\omega \left[\partial_t f^\varepsilon + \omega \cdot \nabla_x f^\varepsilon = \frac{1}{\varepsilon} Q(f^\varepsilon) \right] \begin{pmatrix} 1 \\ \varphi_{\Omega}^\varepsilon(\omega) \end{pmatrix} \, d\omega
\]
Hyperbolic system

Thm. The distribution \(f^\varepsilon \) solution of (5) satisfies:

\[
f^\varepsilon \xrightarrow{\varepsilon \to 0} \rho \mathcal{M}_\Omega (\omega)
\]

where \(\rho \) and \(\Omega \) have different convection speeds \((c_1 \neq c_2) \).

Remarks:
- the system obtained is hyperbolic...
- ...but non-conservative (due to the constraint \(|\Omega| = 1 \))

where \(c_1, c_2 \) and \(\lambda \) depend on \(T = D/\nu \).
Thm.4 The distribution f^{ε} solution of (5) satisfies:

\[f^{\varepsilon} \xrightarrow{\varepsilon \to 0} \rho \mathcal{M}_{\Omega}(\omega) \]

Hyperbolic system

\[
\begin{align*}
\partial_t \rho &+ c_1 \nabla_x \cdot (\rho \Omega) = 0, \\
\rho (\partial_t \Omega + c_2 (\Omega \cdot \nabla_x) \Omega) &+ \lambda (\text{Id} - \Omega \otimes \Omega) \nabla_x \rho = 0, \\
|\Omega| &= 1
\end{align*}
\]

where c_1, c_2 and λ depend on $T = D/\nu$.

Remarks:

- the system obtained is hyperbolic...
- ...but non-conservative (due to the constraint $|\Omega| = 1$)
- ρ and Ω have different convection speeds ($c_1 \neq c_2$).

Hyperbolic system

Thm. The distribution f^ε solution of (5) satisfies:

$$f^\varepsilon \xrightarrow{\varepsilon \to 0} \rho \mathcal{M}_\Omega(\omega)$$

Hyperbolic system

\[\begin{align*}
\partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) &= 0, \\
\rho (\partial_t \Omega + c_2 (\Omega \cdot \nabla_x) \Omega) + \lambda (\text{Id} - \Omega \otimes \Omega) \nabla_x \rho &= 0, \\
|\Omega| &= 1
\end{align*} \]

where c_1, c_2 and λ depend on $T = D/\nu$.

Remarks:

- the system obtained is hyperbolic...
- ...but non-conservative (due to the constraint $|\Omega| = 1$)
- ρ and Ω have different convection speeds ($c_1 \neq c_2$).

Hyperbolic system

Thm. The distribution f^ε solution of (5) satisfies:

$$f^\varepsilon \xrightarrow{\varepsilon\to 0} \rho \mathcal{M}_\Omega(\omega)$$

Remarks:
- the system obtained is hyperbolic...
- ...but non-conservative (due to the constraint $|\Omega| = 1$)
- ρ and Ω have different convection speeds ($c_1 \neq c_2$).

Hyperbolic system

Thm. The distribution f^ε solution of (5) satisfies:

$$f^\varepsilon \xrightarrow{\varepsilon \to 0} \rho \mathcal{M}_\Omega(\omega)$$

Hyperbolic system

\[
\begin{align*}
\partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) &= 0, \\
\rho (\partial_t \Omega + c_2 (\Omega \cdot \nabla_x) \Omega) + \lambda (\text{Id} - \Omega \otimes \Omega) \nabla_x \rho &= 0, \\
|\Omega| &= 1
\end{align*}
\]

where c_1, c_2 and λ depend on $T = D/\nu$.

Remarks:

- the system obtained is hyperbolic...
- ...but non-conservative (due to the constraint $|\Omega| = 1$)
- ρ and Ω have different convection speeds ($c_1 \neq c_2$).

\cite{Degond2008}
Applications

- Combine PTW and Vicsek model

- Extend the method for attraction-alignment-repulsion model

Perspectives

- Study numerically the kinetic equation

 joint work with I. Gamba, J. Haack

- Corroborate the macroscopic model with experimental data

 project with I. Couzin, S. Garnier
Applications

- Combine PTW and Vicsek model

- Extend the method for attraction-alignment-repulsion model

Perspectives

- Study numerically the kinetic equation

 joint work with I. Gamba, J. Haack

- Corroborate the macroscopic model with experimental data

 project with I. Couzin, S. Garnier
Outline

1. PTW model
 - Experiments and model
 - Derivation of a diffusion equation

2. Vicsek model
 - The model
 - Derivation of a hyperbolic system

3. Numerical schemes
 - Splitting method
 - Particle simulations
 - Micro vs macro
Numerical simulation

We want to numerically solve the macroscopic Vicsek (MV) model:

\[
\begin{align*}
\partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) &= 0, \\
\rho (\partial_t \Omega + c_2 (\Omega \cdot \nabla_x) \Omega) + \lambda (\mathrm{Id} - \Omega \otimes \Omega) \nabla_x \rho &= 0, \\
|\Omega| &= 1
\end{align*}
\]

Two difficulties:

- The model is non-conservative...
- ...and has a geometric constraint

\[\Rightarrow \text{No available theory to deal with this system.}\]
Numerical simulation

We want to numerically solve the macroscopic Vicsek (MV) model:

\[
\frac{\partial t \rho}{\partial t} + c_1 \nabla x \cdot (\rho \Omega) = 0, \\
\rho (\frac{\partial t \Omega}{\partial t} + c_2 (\Omega \cdot \nabla x) \Omega) + \lambda (\text{Id} - \Omega \otimes \Omega) \nabla x \rho = 0, \\
|\Omega| = 1
\]

Two difficulties:

- The model is non-conservative...
- ...and has a geometric constraint

⇒ No available theory to deal with this system.
Numerical simulation

We want to numerically solve the macroscopic Vicsek (MV) model:

\[
\begin{align*}
\partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) &= 0, \\
\rho (\partial_t \Omega + c_2 (\Omega \cdot \nabla_x) \Omega) + \lambda (\text{Id} - \Omega \otimes \Omega) \nabla_x \rho &= 0, \\
|\Omega| &= 1
\end{align*}
\]

Two difficulties:

- The model is non-conservative...
- ...and has a geometric constraint

⇒ No available theory to deal with this system.
Numerical simulation

We want to numerically solve the macroscopic Vicsek (MV) model:

\[
\begin{aligned}
\partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) &= 0, \\
\rho (\partial_t \Omega + c_2 (\Omega \cdot \nabla_x) \Omega) + \lambda (\text{Id} - \Omega \otimes \Omega) \nabla_x \rho &= 0, \\
|\Omega| &= 1
\end{aligned}
\]

Two difficulties:

- The model is non-conservative...
- ...and has a geometric constraint

⇒ No available theory to deal with this system.
Splitting method

The main idea of this method is to replace the geometric constraint ($|\Omega| = 1$) by a relaxation operator:

$$\partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) = 0,$$

In the limit $\eta \to 0$, we recover the original MV model.

To solve numerically this system, we proceed in two steps (splitting):

- First, we solve the conservative part (left-hand-side).
- ...and then the relaxation part.
The main idea of this method is to replace the geometric constraint ($|\Omega| = 1$) by a relaxation operator:

\[
\partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) = 0, \\
\rho (\partial_t \Omega + c_2 (\Omega \cdot \nabla_x) \Omega) + \lambda (\text{Id} - \Omega \otimes \Omega) \nabla_x \rho = 0, \\
|\Omega| = 1
\]

In the limit $\eta \to 0$, we recover the original MV model.

To solve numerically this system, we proceed in two steps (splitting):

\begin{itemize}
 \item First, we solve the conservative part (left-hand-side).
 \item And then the relaxation part.
\end{itemize}
The main idea of this method is to replace the geometric constraint \(|\Omega| = 1\) by a relaxation operator:

\[
\begin{align*}
\partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) &= 0, \\
\partial_t (\rho \Omega) + c_2 \nabla_x \cdot (\rho \Omega \otimes \Omega) + \lambda \nabla_x \rho &= \frac{\rho}{\eta} (1 - |\Omega|^2) \Omega, \\
|\Omega| &= 1
\end{align*}
\]

In the limit \(\eta \to 0\), we recover the original MV model.

To solve numerically this system, we proceed in two steps (splitting):

- First, we solve the conservative part (left-hand-side)...
- ...and then the relaxation part.
Splitting method

The main idea of this method is to replace the geometric constraint \(|\Omega| = 1\) by a relaxation operator:

\[
\begin{align*}
\partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) &= 0, \\
\partial_t (\rho \Omega) + c_2 \nabla_x \cdot (\rho \Omega \otimes \Omega) + \lambda \nabla_x \rho &= \frac{\rho}{\eta} (1 - |\Omega|^2) \Omega,
\end{align*}
\]

In the limit \(\eta \to 0\), we recover the original MV model.

To solve numerically this system, we proceed in two steps (splitting):

- First, we solve the conservative part (left-hand-side)...
- ...and then the relaxation part.
Splitting method

The main idea of this method is to replace the geometric constraint \(|\Omega| = 1\) by a relaxation operator:

\[
\begin{align*}
\partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) &= 0, \\
\partial_t (\rho \Omega) + c_2 \nabla_x \cdot (\rho \Omega \otimes \Omega) + \lambda \nabla_x \rho &= \frac{\rho}{\eta} (1 - |\Omega|^2) \Omega,
\end{align*}
\]

In the limit \(\eta \to 0\), we recover the original MV model.

To solve numerically this system, we proceed in two steps (splitting):

- First, we solve the conservative part (left-hand-side)...
- ...and then the relaxation part.
Splitting method

The main idea of this method is to replace the geometric constraint (|Ω| = 1) by a relaxation operator:

\[\partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) = 0, \]
\[\partial_t (\rho \Omega) + c_2 \nabla_x \cdot (\rho \Omega \otimes \Omega) + \lambda \nabla_x \rho = \frac{\rho}{\eta} (1 - |\Omega|^2) \Omega, \]

In the limit \(\eta \to 0 \), we recover the original MV model.

To solve numerically this system, we proceed in two steps (splitting):

- First, we solve the conservative part (left-hand-side)...
- ...and then the relaxation part.
Other numerical methods

In one direction, the system is written:

\[\partial_t \rho + c_1 \partial_x (\rho \cos \theta) = 0 \]
\[\partial_t \theta + c_2 \cos \theta \partial_x \theta - \lambda \frac{\sin \theta}{\rho} \partial_x \rho = 0. \] \(\text{(6)}\)

Multiplying (6) by \(1/\sin \theta\) and integrating in \(\theta\), we find a conservative formulation of the MV model.

Solving the conservative formulation gives another method

\[\Rightarrow \text{Conservative method} \]

Remark. Other methods can be developed using the “non-conservative” form of the MV model (e.g. upwind scheme).
Other numerical methods

In one direction, the system is written:

\[
\begin{align*}
\partial_t \rho + c_1 \partial_x (\rho \cos \theta) &= 0 \\
\partial_t \theta + c_2 \cos \theta \partial_x \theta - \lambda \frac{\sin \theta}{\rho} \partial_x \rho &= 0.
\end{align*}
\]

(6)

Multiplying (6) by \(1/\sin \theta\) and integrating in \(\theta\), we find a conservative formulation of the MV model.

Solving the conservative formulation gives another method

\[\Rightarrow \text{Conservative method} \]

Remark. Other methods can be developed using the “non-conservative” form of the MV model (e.g. upwind scheme).
Other numerical methods

In one direction, the system is written:

\[
\begin{align*}
\partial_t \rho + c_1 \partial_x (\rho \cos \theta) &= 0 \\
\partial_t \theta + c_2 \cos \theta \partial_x \theta - \lambda \frac{\sin \theta}{\rho} \partial_x \rho &= 0.
\end{align*}
\] (6)

Multiplying (6) by \(1/\sin \theta\) and integrating in \(\theta\), we find a \textit{conservative formulation} of the MV model.

Solving the conservative formulation gives another method

\(\Rightarrow\) \textbf{Conservative method}

\textbf{Remark.} Other methods can be developed using the “non-conservative” form of the MV model (e.g. \textit{upwind scheme}).
Other numerical methods

In one direction, the system is written:

\[
\begin{align*}
\partial_t \rho + c_1 \partial_x (\rho \cos \theta) &= 0 \\
\partial_t \theta + c_2 \cos \theta \partial_x \theta - \frac{\lambda \sin \theta}{\rho} \partial_x \rho &= 0.
\end{align*}
\]

(6)

Multiplying (6) by \(1/\sin \theta\) and integrating in \(\theta\), we find a conservative formulation of the MV model.

Solving the conservative formulation gives another method

\(\Rightarrow\) Conservative method

Remark. Other methods can be developed using the “non-conservative” form of the MV model (e.g. *upwind scheme*).
Simulations 1

The numerical schemes agree with each other on *rarefaction waves* (smooth solutions)
Simulations 2

However, the numerical schemes disagree when the solution is a shock wave (non-smooth solutions)

Question: What is the correct solution? Do we have it?

⇒ Go back to the microscopic model...
Simulations 2

However, the numerical schemes disagree when the solution is a shock wave (non-smooth solutions).

Question: What is the correct solution? Do we have it?

⇒ Go back to the microscopic model...
Simulations 2

However, the numerical schemes disagree when the solution is a shock wave (non-smooth solutions)

Question: What is the correct solution? Do we have it?

⇒ Go back to the microscopic model...
Particle simulations

Since there is no theoretical solution to test our numerical simulations, we use the microscopic Vicsek model as a benchmark:

\[
\frac{dx_k^e}{dt} = \omega_k^e, \\
\frac{d\omega_k^e}{dt} = \frac{1}{\varepsilon} (I - \omega_k^e \otimes \omega_k^e) (\nu \bar{\Omega}_k^e \, dt + \sqrt{2D} \, dB_t),
\]

with

\[
\bar{\Omega}_k^e = \frac{J_k^e}{|J_k^e|}, \quad J_k^e = \sum_{j, |x_j^e - x_k^e| \leq \varepsilon R} \omega_j^e.
\]
Particle simulations

Since there is no theoretical solution to test our numerical simulations, we use the microscopic Vicsek model as a benchmark:

\[
\frac{dx_k^\varepsilon}{dt} = \omega_k^\varepsilon, \\
d\omega_k^\varepsilon = \frac{1}{\varepsilon}(\text{Id} - \omega_k^\varepsilon \otimes \omega_k^\varepsilon)(\nu \bar{\Omega}_k^\varepsilon dt + \sqrt{2D} dB_t),
\]

with

\[
\bar{\Omega}_k^\varepsilon = \frac{J_k^\varepsilon}{|J_k^\varepsilon|}, \quad J_k^\varepsilon = \sum_{j, |x_j^\varepsilon - x_k^\varepsilon| \leq \varepsilon R} \omega_j^\varepsilon.
\]
We use Riemann problem as initial condition.

Figure: Density ρ: Micro (left) and Macro (right)
We take a cross section of the distribution in the x-direction:

![Graph showing macro. equation (line) and micro. equation (dot) at time $t = 2$.](image)

Figure: macro. equation (line) and micro. equation (dot) at time $t = 2$.
We take a cross section of the distribution in the x-direction:

![Graph showing macro equation (line) and micro equation (dot) at time $t = 4$.]
Micro vs macro

We compare the solutions of the MV model with the particles for the shock-wave solution:

The splitting method has the “correct speed”.

\[\rho \cos \theta \]
We compare the solutions of the MV model with the particles for the shock-wave solution:

The splitting method has the “correct speed”.
Contact discontinuity

For an initial condition given as a *contact discontinuity*, a weak solution is given by a traveling wave. We observe numerically another type of solution\(^5\):

\(^5\) M., Navoret, SIAM Multiscale Modeling & Simulation (2011)
Contact discontinuity

For an initial condition given as a contact discontinuity, a weak solution is given by a traveling wave. We observe numerically another type of solution\(^5\):

\(^5\)M., Navoret, SIAM Multiscale Modeling & Simulation (2011)
General case

How about *non-standard* initial condition?
General case

How about *non-standard* initial condition?

Micro at $t = 40.00$

Macro at $t = 40.00$