A traffic model for pedestrian and its comparison with experimental data

Sébastien Motsch
CSCAMM, University of Maryland

joint work with: P. Degond, C. Appert-Rolland
M. Moussaid, G. Theraulaz

Workshop on Pedestrian Traffic Flows
Objective: Modeling pedestrian motion in a corridor.
Different types of models:

- Cellular automaton
- Differential equations:
 \[
 \frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = F_i
 \]
- Macroscopic model:
 \[
 \partial_t \rho + \partial_x f(\rho) = 0
 \]
Introduction

Different types of models:
- **Cellular automaton**
- **Differential equations:**
 \[
 \frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = F_i
 \]
- **Macroscopic model:**
 \[
 \partial_t \rho + \partial_x f(\rho) = 0
 \]
Different types of models:

- **Cellular automaton**
- **Differential equations:**

\[
\frac{dx_i}{dt} = v_i \\
\frac{dv_i}{dt} = F_i
\]

- **Macroscopic model:**

\[
\partial_t \rho + \partial_x f(\rho) = 0
\]
Different types of models:

- Cellular automaton
- Differential equations:
 \[
 \frac{dx_i}{dt} = v_i \\
 \frac{dv_i}{dt} = F_i
 \]
- Macroscopic model:
 \[
 \partial_t \rho + \partial_x f(\rho) = 0
 \]
Different types of models:

- Cellular automaton
- Differential equations:
 \[
 \frac{dx_i}{dt} = v_i \\
 \frac{dv_i}{dt} = F_i
 \]
- Macroscopic model:
 \[
 \partial_t \rho + \partial_x f(\rho) = 0
 \]
Outline

1. A model for pedestrian traffic flows
2. Real experiments
3. Experiments Vs Model
The model

We propose the following model:

$$
\begin{align*}
\partial_t \rho_B + \partial_x f(\rho_B, \rho_R) &= 0 \delta \partial^2_x \rho_B \\
\partial_t \rho_R - \partial_x f(\rho_R, \rho_B) &= 0 \delta \partial^2_x \rho_R
\end{align*}
$$

(1)

The flux function f has to satisfy:

- $f(x, y)$ is decreasing in y.
- $f(x, y)$ has a "bell-shape" in x.

Ex. $f(x, y) = \begin{cases}
 x(1 - x - y) & \text{if } 0 \leq x + y \leq 1 \\
 0 & \text{otherwise}
\end{cases}$
The model

We propose the following model:

\[
\begin{align*}
\partial_t \rho_B + \partial_x f(\rho_B, \rho_R) &= \delta \partial_x^2 \rho_B \\
\partial_t \rho_R - \partial_x f(\rho_R, \rho_B) &= \delta \partial_x^2 \rho_R
\end{align*}
\] (1)

The flux function \(f \) has to satisfy:

- \(f(x, y) \) is decreasing in \(y \).
- \(f(x, y) \) has a "bell-shape" in \(x \).

Ex. \(f(x, y) = \begin{cases}
x(1 - x - y) & \text{if } 0 \leq x + y \leq 1 \\
0 & \text{otherwise}
\end{cases} \)
The model

We propose the following model:

$$\begin{align*}
\partial_t \rho_B + \partial_x f(\rho_B, \rho_R) &= \delta \partial_x^2 \rho_B \\
\partial_t \rho_R - \partial_x f(\rho_R, \rho_B) &= \delta \partial_x^2 \rho_R
\end{align*}$$

(1)

The flux function f has to satisfy:

- $f(x, y)$ is decreasing in y.
- $f(x, y)$ has a ”bell-shape” in x.

Ex. $f(x, y) = \begin{cases}
 x(1 - x - y) & \text{if } 0 \leq x + y \leq 1 \\
 0 & \text{otherwise}
\end{cases}$
The model

We propose the following model:

\[
\begin{align*}
\partial_t \rho_B + \partial_x f(\rho_B, \rho_R) &= \delta \partial_x^2 \rho_B \\
\partial_t \rho_R - \partial_x f(\rho_R, \rho_B) &= \delta \partial_x^2 \rho_R
\end{align*}
\] (1)

The flux function \(f \) has to satisfy:

- \(f(x, y) \) is decreasing in \(y \).
- \(f(x, y) \) has a "bell-shape" in \(x \).

Ex. \(f(x, y) = \begin{cases}
 x(1 - x - y) & \text{if } 0 \leq x + y \leq 1 \\
 0 & \text{otherwise}
\end{cases} \)
Properties of the model

Thm. The model (1) is *hyperbolic* if and only if:

\[
\Delta = (\partial_x f + \partial_x \tilde{f})^2 - 4\partial_y f \partial_y \tilde{f} \geq 0,
\]

where \(f = f(\rho_B, \rho_R) \) and \(\tilde{f} = f(\rho_R, \rho_B) \).

Ex. For \(f(x, y) = x \frac{g(x+y)}{x+y} \) with \(g \) a “bell-function”, we have:
Properties of the model

Thm. The model (1) is *hyperbolic* if and only if:

\[
\Delta = (\partial_x f + \partial_x \tilde{f})^2 - 4\partial_y f \partial_y \tilde{f} \geq 0,
\]

where \(f = f(\rho_B, \rho_R) \) and \(\tilde{f} = f(\rho_R, \rho_B) \).

Ex. For \(f(x, y) = x \frac{g(x+y)}{x+y} \) with \(g \) a “bell-function”, we have:
Numerical schemes

We use a *central-scheme* method to solve the system (1):

\[
\frac{U_{i}^{n+1} - U_{i}^{n}}{\Delta t} + \frac{1}{\Delta x} (F_{i+1/2} - F_{i-1/2}) = \delta \frac{U_{i-1}^{n} - 2U_{i}^{n} + U_{i+1}^{n}}{\Delta x^2}.
\]

Here, \(U_{i}^{n} = (\rho_B, \rho_R)^T \) and \(F(\rho_B, \rho_R) = (f(\rho_B, \rho_R), -f(\rho_R, \rho_B))^T \).

\(F_{i+1/2} \) denotes the numerical flux at \(x_{i+1/2} \) defined as:

\[
F_{i+1/2} = \frac{F(U^L_{i+1/2}) + F(U^R_{i+1/2})}{2} - a_{i+1/2} \frac{U^R_{i+1/2} - U^L_{i+1/2}}{2},
\]

with \(a_{i+1/2} \) the maximum eigenvalues at \(x_i \) and \(x_{i+1} \), \(U^L_{i+1/2} \) and \(U^R_{i+1/2} \) are (resp.) the left and right value of \(U \) at \(x_{i+1/2} \) (MUSCL scheme).
Numerical schemes

We use a *central-scheme* method to solve the system (1):

\[
\frac{U_i^{n+1} - U_i^n}{\Delta t} + \frac{1}{\Delta x} \left(F_{i+1/2} - F_{i-1/2} \right) = \delta \frac{U_i^{n-1} - 2U_i^n + U_{i+1}^n}{\Delta x^2}.
\]

Here, \(U_i^n = (\rho_B, \rho_R)^T \) and \(F(\rho_B, \rho_R) = (f(\rho_B, \rho_R), -f(\rho_R, \rho_B))^T \).

\(F_{i+1/2} \) denotes the numerical flux at \(x_{i+1/2} \) defined as:

\[
F_{i+1/2} = \frac{F(U_{i+1/2}^L) + F(U_{i+1/2}^R)}{2} - a_{i+1/2} \frac{U_{i+1/2}^R - U_{i+1/2}^L}{2},
\]

with \(a_{i+1/2} \) the maximum eigenvalues at \(x_i \) and \(x_{i+1} \), \(U_{i+1/2}^L \) and \(U_{i+1/2}^R \) are (resp.) the left and right value of \(U \) at \(x_{i+1/2} \) (MUSCL scheme).
Numerical simulations

For the initial condition, we choose a stationary state (e.g. \(\rho_R \) and \(\rho_B \) constant) perturbed by some noise. We use periodic boundary conditions.

First, we choose \((\rho_B, \rho_R)\) in the hyperbolic region:
Numerical simulations

For the initial condition, we choose a stationary state (e.g. ρ_R and ρ_B constant) perturbed by some noise. We use periodic boundary conditions.

First, we choose (ρ_B, ρ_R) in the hyperbolic region:

The initial condition simply propagates and diffuses.
For the initial condition, we choose a stationary state (e.g. ρ_R and ρ_B constant) perturbed by some noise. We use periodic boundary conditions.

First, we choose (ρ_B, ρ_R) in the hyperbolic region:

![Graph showing the initial condition propagating and diffusing](image)

The initial condition simply propagates and diffuses.
Numerical simulations

Then, we initiate with a stationary state in the hyperbolic region:

We observe the apparition of clusters. Inside the cluster, the total density is around the maximum 1, thus the flux is zero and the clusters are immobile.
Then, we initiate with a stationary state in the hyperbolic region:

![Graph showing (rhoB, rhoR) at time t = 100.00](image)

We observe the apparition of *clusters*. Inside the cluster, the total density is around the maximum 1, thus the flux is zero and the clusters are immobile.
Outline

1. A model for pedestrian traffic flows
2. Real experiments
3. Experiments Vs Model
Real experiments

Objective: We would like to compare the model with real experimental data.

Set-up for the experiments

Collected data
Estimation of the densities

We only consider the angle position θ_i of the pedestrian:
Results

We plot the densities \((\rho_B, \rho_R)\) in the experiments over time:

- Formation of bands.
- The speed of the bands is lower when the density is higher.
Results

We plot the densities \((\rho_B, \rho_R)\) in the experiments over time:

- Formation of *bands*.
- The speed of the bands is lower when the density is higher.
Results

We plot the densities \((\rho_B, \rho_R)\) in the experiments over time:

- Formation of *bands*.
- The speed of the bands is lower when the density is higher.
Outline

1. A model for pedestrian traffic flows
2. Real experiments
3. Experiments Vs Model
Estimation of the flux

To compare the experiences with the model, we need first to estimate the flux function $f(\rho_B, \rho_R)$.

- f is decreasing with ρ_R.
- f seems to saturate when $\rho = \rho_B + \rho_B \approx 2.5$.

Pbm: No data for $\rho \geq 2.5$. \Rightarrow We extend by a “bell-shape” function:

$$f(\rho_B, \rho_R) = \rho_B (1.29 - .26 \rho_B - .24 \rho_R) \approx \frac{1}{4} \rho_B \cdot (5 - \rho).$$

Remark. 5 ped/m² is usually considered as the maximum density.
Estimation of the flux

To compare the experiences with the model, we need first to estimate the flux function $f(\rho_B, \rho_R)$.

- f is decreasing with ρ_R.
- f seems to saturate when $\rho = \rho_B + \rho_B \approx 2.5$.

Pbm: No data for $\rho \geq 2.5$. \Rightarrow We extend by a “bell-shape” function:

$$f(\rho_B, \rho_R) = \rho_B(1.29 - .26 \rho_B - .24 \rho_R) \approx \frac{1}{4} \rho_B \cdot (5 - \rho).$$

Remark. $5\text{ped}/m^2$ is usually considered as the maximum density.
Estimation of the flux

To compare the experiences with the model, we need first to estimate the flux function $f(\rho_B, \rho_R)$.

- f is decreasing with ρ_R.
- f seems to saturate when $\rho = \rho_B + \rho_B \approx 2.5$.

Pbm: No data for $\rho \geq 2.5$. ⇒ We extend by a “bell-shape” function:

$$f(\rho_B, \rho_R) = \rho_B(1.29 - .26\rho_B - .24\rho_R) \approx \frac{1}{4}\rho_B \cdot (5 - \rho).$$

Remark. $5\text{ped}/m^2$ is usually considered as the maximum density.
Estimation of the flux

To compare the experiences with the model, we need first to estimate the flux function \(f(\rho_B, \rho_R) \).

\[f \text{ is decreasing with } \rho_R. \]

\[f \text{ seems to saturate when } \rho = \rho_B + \rho_B \approx 2.5. \]

Pbm: No data for \(\rho \geq 2.5 \). \(\Rightarrow \) We extend by a “bell-shape” function:

\[f(\rho_B, \rho_R) = \rho_B(1.29 - .26\rho_B - .24\rho_R) \approx \frac{1}{4}\rho_B \cdot (5 - \rho). \]

Remark. 5\text{ped}/m^2 is usually considered as the maximum density.
Estimation of the flux

To compare the experiences with the model, we need first to estimate the flux function $f(\rho_B, \rho_R)$.

- f is decreasing with ρ_R.
- f seems to saturate when $\rho = \rho_B + \rho_B \approx 2.5$.

Pbm: No data for $\rho \geq 2.5$. \Rightarrow We extend by a “bell-shape” function:

$$f(\rho_B, \rho_R) = \rho_B(1.29 - .26\rho_B - .24\rho_R) \approx \frac{1}{4}\rho_B \cdot (5 - \rho).$$

Remark. 5 ped$/m^2$ is usually considered as the maximum density.
We run the model with the same initial condition as in the experiments:

- The model captures well the formation of traveling bands. These bands are also slower when the density is higher.
- However, the model seems to diffuse more.
We run the model with the same initial condition as in the experiments:

- The model captures well the formation of traveling bands. These bands are also slower when the density is higher.
- However, the model seems to diffuse more.
We run the model with the same initial condition as in the experiments:

- The model captures well the formation of traveling bands. These bands are also slower when the density is higher.
- However, the model seems to diffuse more.
We run the model with the same initial condition as in the experiments:

- The model captures well the formation of traveling bands. These bands are also slower when the density is higher.
- However, the model seems to diffuse more.
For one experiment, the model hits the zone of non-hyperbolicity:
Adding a small amount of diffusion ($\delta = .05$) prevents the formation of clusters:
Conclusion

- We have proposed a simple model to describe the motion of pedestrian in a corridor.
- This model leads to the formation of clusters when the total density is high.
- It also captures some features of the experimental data (traveling bands).

In the future, we would like to:
- find an appropriate quantifier to measure the agreement between the model and the experiments.
- understand analytically the formation of clusters.
Conclusion

- We have proposed a simple model to describe the motion of pedestrian in a corridor.
- This model leads to the formation of clusters when the total density is high.
- It also captures some features of the experimental data (traveling bands).

In the future, we would like to:

- find an appropriate quantifier to measure the agreement between the model and the experiments.
- understand analytically the formation of clusters.
We have proposed a simple model to describe the motion of pedestrian in a corridor.

This model leads to the formation of clusters when the total density is high.

It also captures some features of the experimental data (traveling bands).

In the future, we would like to:

- find an appropriate quantifier to measure the agreement between the model and the experiments.
- understand analytically the formation of clusters.