Ex 1. [3pts] Let \(f(x) = xe^x - 1 \).

a) To apply the bisection method, we need to find \(a, b \) such that \(f(a)f(b) < 0 \). Here, we can choose: \(a = 0 \) \((f(a) = -1 < 0)\), \(b = 1 \) \((f(b) \approx 1.72 > 0)\). For the Newton’s method, we have to start “close” to a zero of \(f \). Here, we can try with \(x_0 = 0 \).

b) The error of both method is represented in the following figure ??:

![Graph showing error of Newton and bisection methods](image)

Figure 1: Evolution of the error \(|x_n - x_*|\) at each iteration for the Newton’s method (blue) and the bisection method (green) in log scale in \(y \). In this scale, the convergence of the Newton’s method is quadratic and the bisection method is only linear.

b*) To estimate the decay, we denote \(e_n = |x_n - x_*| \) where \(x_n \) is given by the algorithm (Newton or bisection) and \(x_* \) (the zero of \(f \)) is taken as the last estimate of the Newton’s method.

To measure the convergence, we need to analyze the sequence \(\{e_n\} \) in log scale:

\[
y_n = \ln e_n.
\]

Then using a linear regression (\texttt{polyfit(1:N,y,1)} in Octave/Matlab), we obtain for the bisection method (using 50 points):

\[
y_n \approx -0.693n - 1.73.
\]
Thus, $e_n \approx 0.18 e^{-0.69n} = 0.18(0.50018)^n$. This result was expected since $|x_n - x_*| \approx C(\frac{1}{2})^n$.

For the Newton’s method, it is more delicate. First, we use only 7 points since for $n > 6, x_n$ is ‘numerically’ equal to zero. Then, looking at the figure ?, the behavior of y_n seems quadratic. Thus, we do a regression with a polynomial of order 2:

$$y_n \approx -1.59 \cdot n^2 + 4.13 \cdot n - 2.13.$$

Thus, $e_n \approx 0.12 \cdot (62)^n \cdot (0.2)^n$.

Ex 2. 4pts

Let $\varphi(x) = \sqrt{x + 1}$.

a) We show that φ is a contraction on $I = [0, \infty)$.

\begin{itemize}
 \item[\circ] For any $x \geq 0$, $\varphi(x) \geq 0$. Thus, $\varphi(I) \subset I$.
 \item[\circ] $|\varphi'(x)| = \left|\frac{1}{2(x+1)}\right| \leq \frac{1}{2}$ on I.

Thus, for any $x, y \in I$, we have: $|\varphi(x) - \varphi(y)| \leq \frac{1}{2}|x - y|$.
\end{itemize}

Therefore, φ is a contraction on I. We deduce that there exists a unique fixed point x_* of φ on I.

b) Let $J = [1, 2]$. We have $\varphi(J) \subset J$, thus we can narrow our interval ($x_* \in J$).

Consider the sequence $\{x_n\}_n$ defined recursively by: $x_{n+1} = \varphi(x_n)$ with $x_0 = 1$. We have:

$$|x_n - x_*| \leq \frac{k^n}{1-k} \cdot |b-a| = 1 \cdot \left(\frac{1}{2}\right)^{n-1}.$$

Thus, in order to have the error $e_n = |x_n - x_*|$ less than 10^{-4}, a sufficient condition is:

$$\frac{1}{2^{n-1}} \leq 10^{-4} \Rightarrow n \geq \frac{4 \ln 10}{\ln 2} + 1 \approx 14.3.$$

After 15 iterations, the error is less than 10^{-4}.

Ex 3. See the script on the last page.

Ex 4. Let $\varphi(x) = \sqrt{x^2 + 1}$ and $I = [0, \infty)$.

a) By the mean value theorem:

$$|\varphi(x) - \varphi(y)| = |\varphi'(c)(x - y)|,$$

with $c \in [x, y]$. Since $|\varphi'(s)| = \left|\frac{s}{\sqrt{s^2+1}}\right| < 1$, we deduce that: $|\varphi(x) - \varphi(y)| < |x - y|$.

b) We notice that $x_n = \sqrt{n}$. Thus, the sequence does not converge.
c) $\varphi(x) = x$ implies: $\sqrt{x^2 + 1} = x$ which is not possible. Thus, φ does not have a fixed point.

This does not contradict the fixed-point theorem since φ is not a contraction: it does not exist $k < 1$ such that $|\varphi(x) - \varphi(y)| \leq k|x - y|$.

Ex 5. [3pts]
Let $f(x) = e^x$. Consider the 3-midpoint formula to estimate $f'(x)$:

$$f'(x) \approx \frac{f(x + h) - f(x - h)}{2h}$$

a) The estimation of $f'(2)$ using the 3-midpoint formula gives:

<table>
<thead>
<tr>
<th>h</th>
<th>estimation $f'(2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>7.40138</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>7.38918</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>7.38906</td>
</tr>
</tbody>
</table>

b) We have to find an upper-bound for $f^{(3)}(x)$ on $[x_0 - h, x_0 + h]$:

$$|f^{(3)}(\xi)| \leq e^{2+h} \leq e^{2+.1} \approx 8.2,$$

since $|h| \leq .1$. Therefore,

$$\left| f'(x) - \frac{f(x + h) - f(x - h)}{2h} \right| \leq \frac{8.2}{6}h^2.$$

.5pt

.5pt

c) We estimate the error of the 3-midpoint formula and the upper bound we have found in b)

<table>
<thead>
<tr>
<th>h</th>
<th>error</th>
<th>max. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>$1.23 \cdot 10^{-2}$</td>
<td>$1.37 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>$1.23 \cdot 10^{-4}$</td>
<td>$1.37 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>$1.23 \cdot 10^{-6}$</td>
<td>$1.37 \cdot 10^{-6}$</td>
</tr>
</tbody>
</table>
%%% Fixed-point method %%%

%%% function phi
phi = @(x) exp(-x);

%%% numerical parameters
N = 10; % number iteration
x0 = 1; % initial value

%%% Saving
saveX = zeros(1,N+1);

%---------------- Loop ----------------
%----------------

%%% initialization
x = x0;
saveX(1) = x;

%%% loop
for i=1:N
 % x^n+1 = phi(x^n)
 x = phi(x);
 % save
 saveX(i+1) = x;
end

%%% Estimation error: x* = last value of x_n
xS = saveX(end);
errorFixedPointMethod = sqrt((saveX-xS).^2);

%---------------- plot
figure(1);
clf
xInt = 0:.01:5;

%%% trick
xSpiral = [saveX' saveX']'(:,);
ySpiral = [0; phi(xSpiral(1:(end-1))));

%axis([-2 2 -2 2],'equal')
xlabel('x')
title('Fixed-point method')
legend(['f(x) = exp(-x)', 'y=x', 'location','northwest'])
axis([0 1.5 0 1.5])
figure(2);
clf
semilogy(0:(N-1),errorFixedPointMethod(1:N),'-or','linewidth',3)
xlabel('number of iterations (n)')
ylabel('error: |x_n-x_*|')
title('Error of the fixed-point method')
print('error_fixed-point_semilog.eps','-depsc2')