Exercise 1. Let \(f(x) \) a smooth function. We consider the backward difference method
\[P_1(h) = \frac{f(x^*) - f(x^* - h)}{h}. \]

a) Show that the method is 1st-order accurate:
\[|f'(x^*) - P_1(h)| = O(h). \]

b) Use the Richardson’s method to build a more accurate method \(P \) based on \(P_1 \).
Find the accuracy of the new method \(P \).

Exercise 2. Consider the differential equation:
\[\begin{cases}
 y' = \cos y - \sin y \\
 y(0) = 0
\end{cases} \]

a) Show there exists a unique solution \(y(t) \) defined for all time \(t \geq 0 \).
Find an upper and lower bound for \(y(t) \) for \(t \geq 0 \).

b) Suppose we want to use the Euler method to estimate \(y(2) \).
Determine a time step \(\Delta t \) such that the estimation is with accuracy \(10^{-3} \).
Hint: \[|y(t_n) - y_n| \leq \frac{M \Delta t}{2L} (e^{L(t_n)} - 1) \] with \(M = \max_{[0,T]} |y''| \) and \(L = \max_{D} |\partial_y f| \) with \(D = [0, T] \times \mathbb{R} \).

c) Find the equilibria and study their stability.

Extra) Determine the behavior of the solution \(y(t) \) as \(t \to +\infty \).

Exercise 3. Consider the Runge-Kutta method given by the Butcher tableau:
\[
\begin{array}{c|cc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & 1 \\
\end{array}
\]

a) Write the numerical scheme associated with this method.

b) Show that the numerical scheme is 2nd-order accurate, i.e.
\[\text{if } y_n = y(t_n) \text{ then } y_{n+1} = y(t_{n+1}) + O(\Delta t^3). \]

Exercise 4. We consider the ODE: \(x'' = \frac{2x}{1 + x^2} \).

a) Write the ODE as a 1st order system.
Find the energy associated with the ODE.

b) Implement the Improved Euler method.

Extra) Study the stability of the equilibrium: \((x^*, y^*) = (0, 0)\).