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Abstract

In this paper, we are interested in studying self-alignment mechanisms de-
scribed as jump processes. In the dynamics proposed, active particles are
moving at a constant speed and align with their neighbors at random times
following a Poisson process. This dynamics can be viewed as an asynchronous
version of the so-called Vicsek model. Starting from this particle dynamics,
we introduce the related kinetic description and then derive a continuum hy-
drodynamic model. We then introduce different discretization strategies for
the hierarchy of proposed models, we numerically study the convergence of the
schemes and compare the behaviors of the different systems for several test
cases.
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1 Introduction
We are interested in the mathematical modeling and numerical simulation of col-
lective motion in systems composed by a large number of agents. Typical examples
are flock of birds, fish schools, suspensions of active swimmers such as bacteria
or cells. This field of research is nowadays an extremely active topic both in the
mathematical community [6, 7, 17, 37] as well as in the physics community [33, 44].
The problem of describing this kind of motion can be and has been historically
tackled from different points of view and with different levels of detail. The first
and more natural approach consists in describing these systems by introducing laws
that each individual should follow. We refer to this approach as particle model or
Individual Based Model (IBM) [9–11, 13, 29, 31, 34, 36]. At the next level of detail,
we find the so-called kinetic approaches which describe the time evolution of such
microscopic systems using a probabilistic viewpoint through a density distribution.
In this description, a given agent or particle does not have a definite position or
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velocity but instead certain probabilities of having different positions and veloci-
ties. We refer to [37] for a recent review on this kind of approach. Finally, one
can describe large systems of interacting particles by means of macroscopic mod-
els, in this case only the evolution of local average quantities such as the density
and average velocity of the particles are typically studied [33]. The study of the
transition from one model to the other is crucial to better understand the possible
use and range of validity of each description. The derivation of macroscopic models
from microscopic ones has been intensively studied theoretically by many authors
in the recent past [4, 5, 8, 20,24,27,39,41,42]. However, a similar analysis have not
been yet performed with the same accuracy from a numerical standpoint. Only
few numerical comparisons between models have been investigated in the context
of self-organized dynamics [1,35]. Thus, there is a need for a more systematic com-
parisons between models and numerical techniques to determine in which regimes
(e.g. number of individual, range of parameters) each description works best. This
work represents an attempt in this direction.

In this paper, we consider at the microscopic level (i.e. IBM) an interacting
particle system which self-align due to a biased jump process. In this dynamics,
agents move at a constant speed while their direction of motion are randomly up-
dated towards the average velocity of their neighbors. One can view this dynamics
as an asynchronous version of the Vicsek model [43]. Even though the primary goal
of this study is to investigate alignment interaction, it is clear that this dynamics
can be generalized to take into account other type of interaction such as attrac-
tion and repulsion [3,12]. Many aspects of the Vicsek model have been extensively
studied such as phase transitions [2,10,18,28,43], numerical simulations [19,35,43],
derivation of macroscopic models [8, 15, 16, 20]. We perform similar studies for the
model proposed.

The first goal is to derive a macroscopic system of equations, a so-called self-
organized hydrodynamic (SOH), starting from the proposed microscopic jump pro-
cess. In order to derive the corresponding macroscopic model, we use an intermedi-
ate kinetic description which studies the evolution of the one-particle distribution
in phase space. Here, the kinetic description of the jump process is given by a
Bhatnagar-Gross-Krook (BGK) operator. The second goal is to perform a nu-
merical study and comparison of the three models introduced: the microscopic, the
mesoscopic and the macroscopic one. With this aim, we introduce ad hoc discretiza-
tions of the systems and compare them trying to highlight the different behaviors
expected from such models.

In many fields of research where numerical simulations play a fundamental role
(e.g. fluid-dynamics, plasma physics or structural engineering), there exists a num-
ber of benchmark tests which permit to evaluate the efficiency and the performances
of new numerical methods. In these fields, the validity of the mathematical or phys-
ical models are well established and only the numerical schemes have to be tested.
In biology, numerical simulations are also used to assess the pertinence of the model
in describing various phenomena. However, there is a need to develop ’standard-
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ized tests’ to examine and compare different models, in the same vein as physicists
aim at characterizing phase transitions [10, 43]. It will be suitable that once that
a new model is proposed which shares similarities with pre-existing dynamics, we
could use a battery of tests to examine whether a models give similar results. For
instance, in fish modeling, a systematic comparison between several dynamics has
been performed in [38] leading to a ’meta-analysis’. This paper advocates in starting
to systematize such approach by introducing some simple tests which (i) assess the
validity of the numerical methods by performing a numerical convergence analysis,
(ii) identify typical features of the models proposed by running several Riemann
problems and smooth solutions (Vortex configuration) and (iii) compare the differ-
ent scale dynamics: microscopic, mesoscopic and macroscopic one. With this idea
in mind, we plan to perform in a near future a study aiming at comparing several
models of active particles already present in literature.

The outline of the paper is as follows. In section 2, we introduce the model
hierarchy and the main results. It consists of the IBM, the kinetic and the hydro-
dynamic limits. In Section 3 we will detail the numerical schemes used to discretize
the different models. In Section 4 we introduce the benchmark tests and we analyze
the different solutions obtained. Section 5 is devoted to draw a conclusion and to
open new perspectives.

2 The model
In this section we introduce a hierarchy of models describing self-alignment through
jump process at various scales. We first start from a system of interacting particles
(e.g. IBM model), then we introduce the associated kinetic description and finally
we derive the hydrodynamic limit of such dynamics.

2.1 Individual-Based Model

We consider a system of N -particles moving in Rd, where d is the spatial dimension
(d = 2 or 3). Each particle k ∈ {1, . . . , N} is described by its position xk(t) ∈ Rd
and its orientation ωk(t) ∈ Sd−1:

ẋk = c ωk, (2.1)

where c is the (constant) speed of the particle. The evolution of the orientation
ωk(t) is modeled as a jump process where the jumps occur according to a Poisson
process with a constant rate ν > 0. Thus, the trajectory of the particle xk is
piece-wise linear (see figure 1). The new direction of motion ω∗k is sampled from
the following density distribution:

P (ωk → ω∗k) = φ(Ωk · ω∗k). (2.2)
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Here, φ is a given density distribution that satisfies:∫
ω∈Sd−1

φ(Ω · ω) dω = 1 , for any Ω ∈ Sd−1. (2.3)

The unit vector Ωk is the average direction at xk (see figure 1). To estimate this
average, we compute the local flux J (xk) which sums up the velocities direction ωi
in the zone of influence of xk and then we normalize this local flux:

Ωk = J (xk)
|J (xk)|

, J (xk) = 1
N

N∑
i=1

K
(
|xk − xi|

)
ωi. (2.4)

The zone of influence is encoded in the influence kernel K(|x|) which is supposed
smooth at the origin and compactly supported (e.g. an indicator function). Notice
that the new velocity ω∗k is independent of ωk.

  kernel of
observation

  alignment
     (jump)

Figure 1: Illustration of the velocity jump process. The particle k changes its
direction ωk according to a Poisson process with rate ν. Once a jump occurs, the
new direction ω∗k is sample from the distribution φ centered around Ωk the average
direction of the local neighbors (represented in red).

Remark 2.1 The evolution of ωk is similar to a compound Poisson Process [23]:

ωk(t) = ∆ω1 + . . .+ ∆ωN(t)

where N(t) is a Poisson process with intensity ν and ∆ωj are random variables
with laws given by ∆ωj = ω∗k − ωk where ω∗k is distributed according to (2.2).

Since the time of occurrence of jumps for ωk is modeled as a Poisson process,
the probability that a jump occurs in a time interval ∆t is given by:

Prob(ωk "jumps during" [t, t+ ∆t]) = 1− e−ν∆t.
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If no jump occurs, the particle k keeps moving straight during the time interval
[t, t+ ∆t].

Several choices of distribution φ can be made. For instance, in the original
Vicsek model [43], as the dynamics takes place in a plane, velocities vk are solely
described using angle direction θ∗k. The post-jump angle direction of a particle is
given by:

θ∗k = θΩk + ε,

where θΩk denotes the angle direction of the average direction Ωk and ε is a random
variable with uniform law on the interval [−η, η]. Thus, η indicates the level of
’noise’ in the dynamics (i.e. the larger η is, the more ’noisy’ is the dynamics). To
have a similar dynamics in our framework, we have to take:

φ(s) =
{
C if |s| ≤ arccos(η)
0 otherwise, (2.5)

where C is a normalization constant. With this choice for φ, we obtain the same law
for the jump velocity as in the original Vicsek model. The only difference is that
in our dynamics the jumps do not occur all at the same time but are distributed
in time according to a Poisson process. For this reason, we refer to the dynamics
(2.1)(2.2) with φ given by (2.5) as the asynchronous Vicsek model.

Another choice for φ is given by a Von Mises distribution:

φ(cos θ) = C exp
(cos θ

σ

)
, (2.6)

where σ denotes the spread of the distribution corresponding to the level of ’noise’
and C is once again a normalization constant. The angle θ is the angle between the
average orientation of the particles Ω and the actual orientation of the particle. The
Von Mises distributions correspond to equilibria of the dynamics introduced in [20].
We will show in the next section that the velocity jump process (2.1)(2.2) will also
provide Von Mises distributions as equilibrium. However, as it will be clear in the
next section, the average orientation Ω will differ between the two systems (the
one presented here and the one presented in [21]) leading to different asymptotic
dynamics.

2.2 The kinetic model

2.2.1 Empirical distribution

Starting from the velocity jump process described in the previous paragraph, we
are interested in finding the mesoscopic description associated with this dynamics.
Let f(x, ω, t) be the density of particles at time t ≥ 0 with position x ∈ Rd and
orientation ω ∈ Sd−1. As the number of particles N goes to infinity, we obtain
formally that the distribution f satisfies the following master equation:

∂tf + c ω · ∇xf = ν

(∫
ω̃∈Sd−1

P (ω̃→ω)f(x, ω̃) dω̃ −
∫
ω∗∈Sd−1

P (ω→ω∗)f(x, ω) dω∗
)
,
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where the right-hand side counts the number of particles entering and leaving (x, ω).
The rigorous derivation of such equation is out of the scope of the paper, it requires
to prove the so-called propagation of chaos [30, 32, 40] which appears not to be
straightforward. Using the expression of the transition probability P (ω → ω′)
(2.2), we obtain the kinetic equation:

∂tf + c ω · ∇xf = ν
(
ρφΩf − f

)
. (2.7)

Here, ν > 0 is the jump frequency while ρ(x, t) is the density of particles at the
position x and time t:

ρ(x, t) =
∫
ω∈Sd−1

f(x, ω, t) dω. (2.8)

The distribution φΩf describes the post-jump distribution velocity:

φΩf (ω) = φ(Ωf · ω), (2.9)

where the mean direction Ωf is defined in a similar way as in the Individual-Based
model (2.4), we simply have to change a sum into an integral:

Ωf (x, t) = Jf (x, t)
|Jf (x, t)| , Jf (x, t) =

∫
y∈Rd

∫
ω∈Sd−1

K(|y−x|)f(y, ω, t)ω dydω. (2.10)

The operator K denotes as before the influence kernel.

Remark 2.2 Notice that the collisional operator given by the right-hand-side of
(2.7) is a BGK-type operator (i.e. relaxation of f toward a given distribution
ρφΩf ). In contrast to the Fokker-Planck operator in [20], this operator preserves
the mean direction Ωf (x). In other words, in the homogeneous case in space (i.e. f
independent of x), the mean direction Ωf would remain constant over the relaxation
to equilibrium time while this was not the case for the Fokker-Planck equation
in [20].

BGK type operators are generally obtained as an approximation of Boltzmann
equations [14]. Here, there is no such approximation since the particles in the mi-
croscopic model are supposed to follow a jump process. If the particles would follow
a Boltzmann type equation [26], then we would have to make such approximation
to obtain a BGK equation at the kinetic level.

2.2.2 Dimensionless variables

In order to highlight the main features of the above model, we can introduce the
following dimensionless variables:

t̃ = t/t0 , x̃ = x/x0,
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where t0 and x0 are characteristic time and length. Choosing t0 = ν and x0 = c/ν
and writing f in these new variables f̃(x̃, ω, t̃)dx̃ = f(x, ω, t)dx, the kinetic equation
reduces to:

∂tf + ω · ∇xf = ρφΩf − f, (2.11)

where the density ρ and distribution φΩf are defined in (2.8) and (2.10) respectively.
The kernel of observation K has also to be written in dimensionless variables:
K̃(x̃) = K(x).

2.2.3 Micro-macro scales

We are now interested in studying regimes where the effects of interactions between
agents are strong. With this aim, we rescale space and time variables by introducing
the ratio ε between the microscopic and macroscopic scales

t′ = ε t , x′ = εx. (2.12)

When ε� 1, interactions becomes more important meaning that alignment acts at
a high frequency but the interaction becomes also very localized in space. We write
down the distribution of particle in these new variables: f ε(x′, ω, t′) = 1

εd
f(x, ω, t).

The evolution of f ε is governed by the following equation

∂t′f
ε + ω · ∇x′f

ε = 1
ε

(
ρεφΩfε − f

ε), (2.13)

where ρε denotes the spatial distribution:

ρε(x′, t′) =
∫
ω∈Sd−1

f ε(x′, ω, t) dω

and Ωfε is the average direction in macroscopic variables:

Ωfε(x′, t′) = J
ε(x′, t′)

|J ε(x′, t′)| , J
ε(x′, t′) =

∫
(y′,ω)∈Rd×Sd−1

K

( |y′ − x′|
ε

)
f ε(y′, ω, t′)ω dy′dω.

In the following we drop the primes for clarity. Now notice that the average direction
Ωε
f becomes local in space as ε → 0. More precisely, by a change of variables and

Taylor expansion, we have

Ωfε(x, t) = Ω̄fε(x, t) +O(ε2),

with
Ω̄fε(x, t) = jfε(x, t)

|jfε(x, t)|
, jfε(x, t) =

∫
ω∈Sd−1

f ε(x, ω, t)ω dω. (2.14)

Thus, supposing the function φ is smooth, we deduce the following expression for
the equation satisfied by f ε

∂tf
ε + ω · ∇xf

ε = 1
ε
Q(f ε) +O(ε),
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with Q(f) the relaxation operator defined as:

Q(f)(x, ω) = ρ(x)φΩ̄f (ω)− f(x, ω), (2.15)

where ρ(x) and Ω̄f (x) are defined in (2.8) and (2.14). In the following, we will omit
the superscript ε if not strictly necessary for clarity.

2.3 The macroscopic model

In this section we are interested in exploring the formal limit ε → 0. We refer to
it to as the hydrodynamic limit. To investigate such a limit, we first study the
properties of the operator Q (2.15). With this aim, we are first interested in the
homogeneous case in space

Q(f)(ω) = ρφΩ̄f (ω)− f(ω),

with ρ and Ω̄f given by:

ρ =
∫
ω∈Sd−1

f(ω) dω , Ω̄f = jf
|jf |

with jf =
∫
ω∈Sd−1

f(ω)ω dω. (2.16)

Since the operator Q is a relaxation operator, the equilibrium functions satisfying
Q(f) = 0 are given by

f(ω) = ρφΩ̄f (ω). (2.17)

Thus, equilibria are fully described by the two macroscopic quantities ρ and Ω̄f .
To find the time evolution of those quantities, we investigate the moments of f . In
order to find a closed form for the moments equations we need to find a complete
set of collisional invariants of Q if they exist. In this context, a function ψ(ω) is
called a collisional invariant if it satisfies:∫

ω∈Sd−1
Q(f)ψ(ω) dω = 0, for any f(ω). (2.18)

Now, it is clear that the constant function ψ = 1 is a collisional invariant since:∫
ω∈Sd−1

Q(f) dω = 0.

This means that the operator Q preserves the total mass of particles. However, the
constant 1 spans only a one-dimensional function space, while the set of equilibria
is a d-dimensional manifold (where d is the spatial dimension). Thus in order to
close the system we need to find other invariants. Unfortunately, in contrast to
classical physics, the operator Q does not preserve any other quantities. Indeed,
for any test function ψ satisfying

∫
ω∈Sd−1 ψ(ω)1 dω = 0, we have∫

ω∈Sd−1
Q(ψ)ψ dω =

∫
ω∈Sd−1

−ψ2 dω.
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Thus, ψ cannot be a (non-trivial) collisional invariant. To overcome the lack of
collisional invariants, we introduce a weak notion of invariants, a so-called class of
generalized collisional invariants (GCI), following the idea introduced in [20].

Definition 1 Fix a direction Ω∗. A function ψΩ∗ is a Generalized Collisional In-
variant (GCI) of the operator Q associated with the vector Ω∗ if it satisfies:∫

ω∈Sd−1
Q(f)ψΩ∗(ω) dω = 0, (2.19)

for any f such that Ω̄f given by (2.16) is proportional to Ω∗. In other words, f
satisfies the constraint:

PΩ⊥∗

( ∫
ω∈Sd−1

f(ω)ω dω
)

= 0, (2.20)

with PΩ⊥∗ = Id− Ω∗ ⊗ Ω∗ orthogonal projection to Ω∗

Thus, in the definition of GCI, we reduce the domain of the test functions ψ. To
find the GCI, we notice that for any Ω∗ ∈ Sd−1 we have∫

ω∈Sd−1
φ(Ω∗ · ω)ω dω = c1Ω∗, (2.21)

where the coefficient c1 can be computed explicitly using polar coordinates (in
dimension d = 2) or spherical coordinates (in dimension d ≥ 3):

c1 =
{ ∫ 2π

0 φ(cos θ) cos θ dθ if d = 2,
2π
∫ π
0 φ(cos θ) cos θ sin θ dθ if d = 3. (2.22)

We deduce the following result:

Proposition 2.3 The set of generalized collisional invariants associated to the unit
vector Ω∗ is given by:

EΩ∗ = {ψΩ∗(ω) = α+ u · ω , with α ∈ R and u orthogonal to Ω∗}. (2.23)

Proof. Fix Ω∗ ∈ Sd−1 and take f satisfying (2.20). Hence, Ω̄f (2.16) is propor-
tional to Ω∗. Integrating the collisional operator Q against ω leads to:∫

ω∈Sd−1
Q(f)ω dω = ρ

∫
ω∈Sd−1

φΩ̄f (ω)ω dω −
∫
ω∈Sd−1

f(ω)ω dω = ρc1Ω̄f − jf ,

where jf is the flux (2.16). The vectors Ω̄f and jf are both proportional to Ω∗.
Now let ψΩ∗(ω) = α+ u · ω with u orthogonal to Ω∗. We have:∫

ω∈Sd−1
Q(f)ψΩ∗ dω = 0 + u ·

(∫
ω∈Sd−1

Q(f)ω dω
)

= u · (ρc1Ω̄f − j) = 0.
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Conversely, denote H the subset of L2(Sd−1) of the functions f satisfying the
constraint (2.20). Notice that H is of codimension d−1 in L2(Sd−1) and that Q is a
(linear) projection operator on H. Therefore, the image of Q(H) is of codimension
d. Thus, the set of functions satisfying (2.19) (i.e. ψ ∈ Im(Q|E)⊥) is of dimension
d. We deduce that the set EΩ∗ includes all the GCI.

�

Knowing the generalized collisional invariant of Q, we can now investigate the
limit of equation (2.13). More precisely, we can prove the following:

Theorem 1 Suppose the solution f ε of (2.13) has a limit when ε→ 0. Then, the
asymptotic limit f0 satisfies:

f ε(x, ω) ε→0−→ ρ0(x)φ(Ω0(x) · ω), (2.24)

with ρ0 and Ω0 satisfying the following system:

∂tρ+ c1∇x · (ρΩ) = 0 (2.25)
ρ
(
∂tΩ + c2Ω · ∇x Ω) + λPΩ⊥∇xρ = 0, (2.26)

where PΩ⊥ = Id−Ω⊗Ω is the projection onto the orthogonal hyperplane to Ω, c1
is defined in (2.22) and:

c2 =
{

1
c1

∫ 2π
0 φ(cos θ) cos 2θ dθ if d = 2,

π
c1

∫ π
0 φ(cos θ)(2 cos2 θ−sin2 θ) sin θ dθ if d = 3, (2.27)

λ =
{

1
c1

∫ 2π
0 φ(cos θ) sin2 θ dθ if d = 2,

π
c1

∫ π
0 φ(cos θ) sin3 θ dθ if d = 3. (2.28)

We leave the proof of the theorem in Appendix A.1.

3 Discretization of the models
In this section we discuss the discretizations techniques for the three models pre-
sented in the previous section. We develop three numerical schemes illustrated in
figure 2 to discretize each model. From now on, we consider specifically a two
dimensional settings. The numerical schemes can be easily generalized to three
dimensional settings.

3.1 Discretization of the particle model

Concerning the particle model described by equations (2.1)(2.2), the algorithm
proposed consists to approximate this continuous Markov process by a discrete
one. We fix a number of N agents, a time step ∆t and an interaction kernel K(|x|).
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Micro. Macro.Kinetic

Semi-Lagrangian Finite-VolumeSDE solver

Figure 2: Three different schemes to solve the dynamics at the three different levels
(i.e., microscopic, kinetic and macroscopic levels).

The choices of the interaction kernel are done such that fair comparisons with the
numerical schemes defined on a mesh are possible. Thus, we choose

K(|x|) =
{

1 if |x| ≤ R
0 if |x| > R,

(3.1)

where the radius R takes the same values of the mesh sizes used for the numerical
discretizations of the kinetic and hydrodynamic models. Starting from an initial
state x0

k and ω0
k, the algorithm consists in the following steps

• Push particles, i.e. xn+1
k = xnk + ∆tωnk (we take c = 1).

• For each particle, compute the number of particles in its neighborhood by
using the expression of the collision kernel K(|x|) defined in (3.1).

• Compute the average direction Ωk using (2.4).

• With probability exp(−ν∆t) the particle does not change direction, i.e. ωn+1
k =

ωnk .

• With probability 1 − exp(−ν∆t) the particle changes direction and its new
direction is sampled from the distribution φ(Ωk · ωk), i.e. ωn+1

k = ω∗k.

To compare the results of this numerical method with the kinetic and macroscopic
dynamics, the collision frequency ν is taken as 1/ε. When ε is small, we expect
to have the particle simulation getting closer to the kinetic dynamics. In addition,
simulations are performed several times and the results are averaged in terms of
density and mean direction. The details of this averaging is given in the numerical
test section.

The comparisons between models will be performed using macroscopic quanti-
ties (i.e. density ρ and average direction u), thus one needs to estimate density and
average orientation from the particles. Here, many different methods can be em-
ployed, our choice is to represent the macroscopic quantities on the same grid used
for the numerical discretization of the kinetic and macroscopic equations. More
precisely, macroscopic quantities are obtained by direct summation of the masses
and momentum of the particles in each cell.
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3.2 Discretization of the kinetic model

Concerning the discretization of the kinetic model which we recall here (the super-
script ε is omitted in the sequel)

∂tf
ε(x, ω, t) + ω · ∇xf

ε(x, ω, t) = 1
ε

(
ρ(x, t)φΩ̄ε

f
(ω)− f ε(x, ω, t)

)
, (3.2)

we consider a semi-Lagrangian technique. This is a deterministic numerical method
which permits to have noiseless numerical simulations for the mesoscopic model.
Another possibility would be to use a Monte-Carlo method to discretize the kinetic
equation. We have decided to use the semi-Lagrangian method since the results
can be compare efficiently with the macroscopic model (2.25)-(2.26). The general
idea of the semi-Lagrangian method used is to fix a grid in the velocity space and
to transform the kinetic equation in a set of linear hyperbolic equations with source
terms. We refer to [22] for the detailed description of this numerical method, here
we recall only the basic principles.

Let introduce a Cartesian grid V of R2 in the two dimensional velocity space.
This grid is such that

V = {vk = k∆v − v0, k = 0, .., N−1} ,

where v0 = [−1,−1] which means we discretize the square [−1, 1] × [−1, 1]. From
the above definition the direction ωk is defined as the angle between the component
of discrete velocity vk in the x-direction vk,x and in the y direction vk,y. In this
setting, the continuous distribution function f is replaced by a N−vector where
each component is assumed to be an approximation of the distribution function f
at location ωk, i.e. fk(x, t) ≈ f(x, ωk, t). The fluid quantities are then obtained
from fk thanks to discrete summations on V:

ρ(x, t) =
∑
k

fk(x, t) ∆v, Ω(x, t) = j(x, t)
|j(x, t)| , j(x, t) =

∑
k

ωkfk(x, t). (3.3)

Thanks to the above discrete velocity approximation we get that the original kinetic
equation (3.2) is replaced by a set of N evolution equations for fk of the form

∂tfk + ωk · ∇xfk = 1
ε

(Ek − fk), (3.4)

where Ek is a suitable approximation of ρ(x, t)φΩ̄f (ω), i.e. Ek ≈ ρ(x, t)φΩ̄f (ωk).
We now use a first order time splitting between the transport and the collisional
operators for each equation (3.4). The transport part (left-hand side) is exactly
solved (i.e. without using a spatial mesh), whereas the collisional part (right hand
side) is solved on the velocity grid.

Let f0
j,k = f(xj , ωk, t=0) be the pointwise initial data on the xj mesh points of

the spatial grid. Let also E0
j,k = ρ(xj , t=0)φΩ̄f (xj ,t=0)(ωk) be the initial distribution
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to which particles relax over time. We describe the first step of the method [t0 → t1]
starting at t0 = 0, we then generalize to an arbitrary time step. Due to the splitting
the first stage is reduced to the solution of N linear transport equations of the form:

∂tfk + ωk · ∇xfk = 0, k = 0, . . . , N−1. (3.5)

In order to solve this part, we define for each of theN equations a piecewise constant
function in the two dimensional space as

fk(x, t0 = 0) = f0
j,k ∀x ∈ [xj−1/2,xj+1/2[, k = 0, . . . , N−1.

which means that they are constant over a square of dimension corresponding to
the length of the mesh. Thanks to this reconstruction, the exact solution of the N
equations at time t1 = t0 + ∆t = ∆t is simply given by

f
∗
k(x) = f(x− ωk∆t), k = 0, . . . , N−1.

Now, to complete one time step, we need to compute the solution of the interaction
part of the equation. First, We solve the right hand side of (3.4) on the grid points

∂tfj,k = 1
ε

(Ej,k − fj,k), k = 0, . . . , N−1, (3.6)

for each point xj of the grid. Initial data are given by the result of the transport
step in the points xj at time t1 = t0 + ∆t: f∗k(xj), k = 0, . . . , N−1. To solve (3.6),
it remains to define the value of the equilibrium distribution E at the center of the
cell after the transport. We need for that to estimate the values of the density and
the average direction at the cell centers. To do so, we sum the local value of the
discrete distribution f at location xj over the velocity set and multiplied by the
generalized discrete collision invariants:∑

k

f∗j,k∆v = ρ∗j and PΩ̄⊥
f

(
∑
k

f∗j,kωk∆v) = Ω∗j ,

where f∗j,k = f
∗
k(xj). This is enough to define the distribution ρ(x, t)φΩ̄f (ω) at time

t1 in the cell centers, i.e. E1
j,k. Finally, the solution of the relaxation step becomes

f1
j,k = exp(−∆t/ε)f∗j,k + (1− exp(−∆t/ε))E1

j,k.

Now, the new values of the distribution f at time t1 = t0 + ∆t = ∆t at locations
xj are known. However, in order to proceed to the next time step, the distribution
f has to be known everywhere. One choice consists in considering that the new
distribution of orientation ρ(x, t1)φΩ̄f (x,t1)(ω) has the same form as the distribution
f in space for each ωk. Starting from the pointwise value of E a piecewise constant
function in space Ek for each orientation ωk is defined in the following way

E∗k(x) = Ek(x, t1) = E1
j,k, ∀x s.t. f∗k(x) = f

∗
k(xj).
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This ends one step of the numerical scheme. Given now the value of the distribution
function fnk(x), for all k = 0, . . . , N−1, and all x ∈ R2 at time tn, the value of the
distribution at time tn+1, fn+1

k (x) can be simply computed as

f
∗
k(x) = f

n
k(x− vk∆t),

f
n+1
k (x) = exp(−∆t/ε)f∗k(x) + (1− exp(−∆t/ε))En+1

k (x), (3.7)

where En+1
k (x) is a piecewise constant function with the discontinuities located in

the same positions (different for each k of the lattice) as the distribution f∗k. It is
computed considering the moments values in the center of each spatial cell after
the transport step. These moments are obtained by computing

∑
k f
∗
j,k∆v and

PΩ̄⊥
f

(
∑
k f
∗
j,kωk∆v) where f∗j,k is the value that the distribution function takes after

the transport in the center of each spatial cell.
This scheme is unconditionally stable, however, for accuracy reasons, the time

step ∆t is chosen in order to satisfy the condition ∆t/∆x < 1 since the maximum
speed of the particles is fixed to one. This also permit a fair comparison with the
particle simulations since the two time steps coincide.

3.3 Discretization of the macroscopic model

To discretize the macroscopic equations, we use the numerical scheme developed
in [35]. For completeness we summarize the scheme here. The non-conservative
model (2.25)-(2.26) can be seen as the asymptotic limit of the following system:

∂tρ+ c1∇x · (ρΩ) = 0, (3.8)

∂t (ρΩ) + c2∇x · (ρΩ⊗ Ω) + λ∇xρ = ρη

η
(1− |Ω|2)Ω, (3.9)

as η → 0. The numerical scheme consists in solving the system (3.8)-(3.9) in
two steps (splitting method). First we use a finite-volume method to solve the
conservative part (left-hand side):

∂tρ+ c1∇x · (ρΩ) = 0,
∂t (ρΩ) + c2∇x · (ρΩ⊗ Ω) + λ∇xρ = 0.

Then, we solve the relaxation part (right-hand side):

∂tρ = 0,

c1∂t (ρΩ) = ρη

η
(1− |Ω|2)Ω.

One can pass to the limit η → 0 as the relaxation operator becomes a mere nor-
malization of Ω.
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4 Numerical investigations
In the previous Sections, we have presented several numerical schemes to approach
the three levels of descriptions of the self-alignment jump process (i.e. particle
system (2.1)(2.2), kinetic equation (2.7) and macroscopic model (2.25)-(2.26)). In
this section, we would like to put to the test the numerical schemes and the theory
by investigating numerically different problems. As stated in the introduction, we
try to introduce a systematic approach which permits to validate both the model
and the numerical methods.

First, we concentrate of the kinetic equation (2.11) and its semi-Lagrangian
discretization. We analyze the convergence of the scheme with respect to its space
discretization. We do not perform a similar convergence study for the particle
dynamics since this is a standard approach. Instead, we are more interested in
performing several comparisons between the hierarchy of the models proposed (i.e.
micro, kinetic, macro). In particular, we show that the particle system converges
toward the kinetic equation as the number of particles N get larger and that the
kinetic equation converges to the macroscopic model as the jump frequency ν in-
creases. Finally, we investigate a novel type of pattern formation observed using a
vortex configuration as initial condition. The solutions, obtained by approaching
the kinetic equation and the macroscopic equation, present a variety of patterns and
are superimposed in time confirming that the two models give identical solutions in
the limit ν →∞. This is also confirmed by a convergence test with respect to the
time and space discretization in which the relative error between the macroscopic
and the kinetic discretizations is measured.

In the following, all the simulations are done in a 2D domain D = [0, 10]× [0, 10]
using periodic boundary conditions.

4.1 A Convergence test for the semi-Lagrangian scheme

In this first part, we analyze the convergence of the semi-Lagrangian method de-
pending on its spatial and time discretization (∆x, ∆y and ∆t). With this aim, we
solve the kinetic equation (2.7) starting with the following initial condition:

f0(x, θ) = C exp(−|x− xc|2)1[−π2 ,
π
2 ](θ), (4.1)

where C is a normalization constraint, xc = (5, 5) is the center of the domain and
1 is the indicator function (see figure 3a). We perform the simulation with a high
resolution in velocity (∆θ = 2π

100) and in time discretization (∆t = 10−3) as we aim
to measure the accuracy of the scheme in space. In figure 3b-c, we plot the solution
at t = 2, 4 time unit with ∆x = ∆y = .25 unit space. We observe that the solution
both diffuses in space and moves in the x−direction as one can expect since the
velocity distribution is centered around θ = 0 initially.

To estimate the accuracy of the method, we use as a benchmark f∗ the solution
computed with ∆x = ∆y = 1

25 = .03125 unit space. Then, we estimate the solutions
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with ∆x = 1, 1
2 ,

1
22 ,

1
23 keeping ∆y = ∆x. To evaluate the convergence, we compute

the L1 distance between the density ρ(x, y, t) estimated at t = 2 with various ∆x
and ∆y:

error(∆x) = ‖ρ∆x(., t=2)− ρ∗(., t=2)‖L1 , (4.2)

where ρ∗(x, y, t) is the mass distribution of the benchmark solution f∗ (i.e. ρ(x, y, t) =∫
θ f(x, y, θ, t) dθ). As we observe in figure 3d, the error is decaying linearly with
respect to ∆x showing that the method is first order accurate in space.
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Figure 3: a,b,c) Mass distribution ρ of the solution to the kinetic equation (2.11)
with the initial condition (4.1) at t = 0, 2 and 4 unit time. Parameters: c = 1,
ν = .1, σ = 1, φ uniform (2.5), ∆t = 10−3, ∆θ = 2π/100. d) Accuracy of the
scheme in space with the error given by (4.2).
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4.2 From microscopic to macroscopic description

We now investigate numerically the links between the three levels of descriptions
of our self-alignment jump process. With this aim, we analyze in different regimes
the solution of a Riemann problem taking the following initial condition

ρ0(x, y) =
{

1, if x < 5
2, if x > 5 , θΩ0(x, y) =

{
1.5, if x < 5
1.83, if x > 5 (4.3)

where ρ0 denotes the mass distribution and θΩ0 the average direction. The solution
is homogeneous in the y-direction and therefore we only plot a slice in the x-
direction. At the particle and kinetic levels, one also needs to specify the density
distribution in velocity variable θ. We use for that a Von Mises distribution (2.6)
with σ given by the noise level of the dynamics (σ = .1).

First, we compare the results given by the particle dynamics (2.1)(2.2) with the
solution of the kinetic equation (2.7) for ν = 1. In figure 4, we plot the density
ρ and velocity u in the x-direction for both solutions. We average the solution of
the particle dynamics over 100 simulations to reduce fluctuation. With N = 103

particles, the particle simulation is more diffusive in space compared with the kinetic
solution. But as the number of particles increases, the solutions get closer to the
kinetic solution, and at N = 105 the curves are almost identical. Such result
illustrates the propagation of chaos: as N → ∞, the particle system (2.1)(2.2)
converges to the (deterministic) solution of the kinetic equation (2.7).

Second, we compare kinetic and macroscopic models. To link the two descrip-
tions, one needs to increase the jump frequency ν in the kinetic model in order to
be close to the equilibrium state. This corresponds to work in an hydrodynamic
scaling (2.12). Thus, as the ν increases, one expects that the solution of the kinetic
equation (2.7) converge to the solution of the macroscopic model (2.25)-(2.26) as
it has been shown analytically in theorem 1. In figure 5, we plot the density ρ
and average velocity u of the kinetic solution for different frequency ν. At ν = 1,
the kinetic solution is more diffusive compared with the macroscopic solution as
expected. With ν = 10, we clearly distinguish the shock and rarefaction profiles.
Still, we do not yet observe a sharp transition (discontinuity) of the shock profile
at x ≈ 3.4 space unit of the macroscopic model. But at ν = 100, the kinetic solu-
tion and macroscopic solution become almost identical, even near the discontinuous
profile (i.e. x ≈ 3.4 and 5.3 space unit).

4.3 Vortex solution

In this paragraph, we would like to investigate the behaviors of our model in a
more complex setting. We consider a fully 2D simulation with an initial condition
given by a vortex configuration (defined below). We compare the results obtained
from the kinetic (2.7) and macroscopic models (2.25)-(2.26). To do so, we solve
the kinetic model in a regime close to the so-called thermodynamical equilibrium
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taking ν = 100. The exact initial condition is as follows:

f0(x, θ) = C exp(− sin(θ−ϕx)), (4.4)

where C is a normalization constraint and ϕx is the angle between the x-axis
and the vector (x − xc) where xc = (5, 5) is the center of the domain. In figure
6a-f, we plot the spatial density ρ(x, y) (color) and average velocity u (arrows)
at different time interval (t = 5, 10, 15 unit times) solving the kinetic equation
(figure 6-left) and macroscopic model (figure 6-right). The symmetry of the initial
condition is preserved through the simulation and the profiles of the solutions keep
alternating between circle and square shape presenting novel patterns. As the
system is non conservative, there is no guarantee that the solution will eventually
dissipate and stabilize to a stationary state [25]. The absence of entropy makes
the time asymptotic of the solution challenging to analyze. The change of model
comes with a cost: solving the macroscopic model took 12.4 seconds whereas 107.9
seconds was required to solve the kinetic model.

Notice that the solution of the macroscopic solution (figure 6-right) is more
diffusive. The kinetic simulation presents more sharp transition. This is due to the
different level of precision of the two numerical schemes employed. This is made
more clear by a convergence analysis of the same kind of the one performed for the
case of the sole scheme for the kinetic equation. In more details, we measure the
the L1 norm of the error between the densities computed by two schemes when the
final time t = 1 reducing the space and time steps. Thus we measure

error(t = 1) = ‖ρmacro(t=1)− ρkinetic(t=1)‖L1 . (4.5)

for ∆x = 2
5 ,

1
5 ,

1
10 keeping ∆y = ∆x and diminishing the time step ∆t accordingly

by using the CFL condition defined in the previous Section. In figure 7, this error
is reported which shows that the two schemes and thus the two models converge
once the mesh becomes smaller. In other words, the two models describe the same
type of dynamics.

5 Conclusions
In this paper, we have derived an hydrodynamic model from a system of self-
propelled particles which align through a jump process. The method has consisted
in first introducing a kinetic description of the model used obtained in the limit of
infinitely many particles. Then, in a regime close to thermodynamic equilibrium,
we have derived a macroscopic description. A discretization strategy has been pro-
posed for each of the three systems. Then, we studied the numerical convergence
of the schemes and compared their behaviors going from the finer description (par-
ticle systems) to the macroscopic limit. This analysis showed that the different
descriptions give not only comparable but equivalent solutions in suitable regimes.
Therefore, in those regimes, kinetic or macroscopic descriptions are a better choice
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Figure 4: Solution of the Riemann problem (4.3) at t = 4 time units for the particle
system (diamond marks) and kinetic equation (line). Left: Density distribution
ρ. Right: average velocity u in the x-direction. As the number of particles N
increases, the solutions to the particle system converge to the kinetic solution.
Parameters particle simulation: c = 1, ν = 1, σ = .1, φ Von Mises (2.6), ∆t = 10−2,
R = 10−1. Additional parameters for the kinetic simulation: ∆x = ∆y = 10−2,
∆θ = 2π/100.

compare with the particle description. They provide more accurate solutions in
shorter time and thus provide more reliable results which might be impossible to
obtain from particle simulations. As a perspective of this work, we would like to
expand the numerical validation strategy proposed in this paper to other active par-
ticles models and extend the jump process model to multispecies agents in order to
consider particles with different characteristics acting in the same environment.

A Appendices

A.1 Proof Theorem 1

Multiplying the equation (2.13) by ε and passing to the limit ε → 0, we deduce
that Q(f0) = 0. Thus,

f0(x, ω) = ρ0(x)φ(Ω0 · ω). (A.1)

To obtain the equations satisfied by ρ0 and Ω0, we use the collisional invariants.
First, using ψ = 1, we integrate (2.13) in ω and deduce the equation of mass
conservation:

∂tρ
ε +∇x(jε) = 0,

where the flux jε is defined in (2.14). At the limit ε → 0, combining (A.1) and
(2.21), we deduce the equation of mass conservation (2.25).

In a second step, we use the generalized collisional invariant. Let vε ∈ Rd be a
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Figure 5: Solution of the Riemann problem (4.3) at T = 4 time units for the
kinetic equation (circle) and macroscopic model (line). Left: Density distribution ρ.
Right: average velocity u in the x-direction. The solutions to the kinetic equation
converge to the corresponding macroscopic model as the frequency of jumps ν
increases. Parameters kinetic simulations: see figure 4. Parameter macroscopic
model: c1 = .949, c2 = .854, λ = .1, ∆x = 10−2, ∆t = 10−2.

vector orthogonal to Ωε. We integrate (2.13) against ω · vε:(
∂tρ

εuε +
∫
ω∈Sd−1

ω · ∇xf ε ω dω
)
· vε = O(ε).

At the limit ε→ 0, we obtain:(
∂tc1ρ

0Ω0 +
∫
ω∈Sd−1

ω · ∇x
(
ρ0φ(Ω0 · ω)

)
ω dω

)
· v0 = 0,

with c1 given by (2.22). In other words, noting P(Ω0)⊥ the projection onto the
orthogonal hyperplane of Ω0, we have:

P(Ω0)⊥

(
∂tc1ρ

0Ω0 +
∫
ω∈Sd−1

ω · ∇x
(
ρ0φ(Ω0 · ω)

)
ω dω

)
= 0.

In the following, we drop the super-script for clarity. Thus, we write:

PΩ⊥

(
c1∂t

(
ρΩ
)

+ ∇x ·
(
ρ

∫
ω∈Sd−1

φ(Ω · ω)ω ⊗ ω dω
))

= 0

PΩ⊥(A+B) = 0. (A.2)

Expanding the expression of A, we deduce that:

PΩ⊥A = c1PΩ⊥
(
∂tρ Ω + ρ ∂tΩ

)
= c1ρ∂tΩ, (A.3)

since ∂tΩ is orthogonal to Ω (i.e. 〈∂tΩ , Ω〉 = 1
2∂t|Ω|

2 = 0).
To simplify the expression of B, we use the following lemma:
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Figure 7: L1 error between the spatial density ρ of the kinetic and macroscopic
model (4.5). The error is decreasing with the reduction of the mesh size and time
step.

Lemma A.1 Let Ω ∈ Sd−1 with d = 2 or d = 3. Then∫
ω∈Sd−1

φ(Ω · ω)ω ⊗ ω dω = αΩ⊗ Ω + βId, (A.4)

where the coefficients c2 and λ are given (resp.) by (2.27) and (2.28).

α =
{ ∫ 2π

0 φ(cos θ) cos 2θ dθ if d = 2,
π
∫ π
0 φ(cos θ)(2 cos2 θ−sin2 θ) sin θ dθ if d = 3, (A.5)

β =
{ ∫ 2π

0 φ(cos θ) sin2 θ dθ if d = 2,
π
∫ π
0 φ(cos θ) sin3 θ dθ if d = 3. (A.6)

Using this lemma, we can expand the expression of B (A.2):

PΩ⊥B = PΩ⊥
(
∇x ·

(
αρΩ⊗ Ω + βρId

))
= αPΩ⊥

(
Ω⊗ Ω∇xρ + ρΩ·∇xΩ + ρ(∇x ·Ω)Ω

)
+ βPΩ⊥∇xρ.

As |Ω| = 1, we deduce that Ω · ∇xΩ is orthogonal to Ω since 〈Ω ·∇xΩ,Ω〉 =
Ω · ∇x|Ω|2 = 0. Thus, PΩ⊥(Ω · ∇xΩ) = Ω · ∇xΩ. Combined with PΩ⊥(Ω) = 0, we
finally obtain:

PΩ⊥B = αρΩ · ∇xΩ + βPΩ⊥∇xρ. (A.7)

Combining (A.3) and (A.7), we deduce (2.26).
Proof. (Lemma A.1)
•We start with the case of dimension d = 2. Using polar coordinates ω = cos θΩ +
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sin θΩ⊥ with Ω⊥ an orthonormal vector to Ω, we obtain:∫
ω∈S1

φ(Ω · ω)ω ⊗ ω dω =
∫ 2π

0
φ(cos θ)

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]
dθ

=
∫ 2π

0
φ(cos θ)

[
cos2 θ 0

0 sin2 θ

]
dθ,

by symmetry. Thus,∫
ω∈Sd−1

φ(Ω · ω)ω ⊗ ω dω = γΩ⊗ Ω + βΩ⊥ ⊗ Ω⊥

with γ =
∫ 2π

0 φ(cos θ) cos2 θ dθ and β given by (A.6). Using that Ω⊥ ⊗ Ω⊥ =
Id− Ω⊗ Ω, we finally obtain (A.4) where:

α = γ − β =
∫ 2π

0
φ(cos θ)(cos2 θ − sin2 θ) dθ,

which leads to the expression (A.5) of α.
• In the case d = 3, we use spherical coordinates: let u and v such that {u, v,Ω}

is an orthonormal basis of R3. Then,

∫
ω∈S2

φ(Ω · ω)ω ⊗ ω dω =
∫ π

θ=0
φ(cos θ) sin θ

∫ 2π

ϕ=0

 cosϕ sin θ
sinϕ sin θ

cos θ

⊗
 cosϕ sin θ

sinϕ sin θ
cos θ

 dϕdθ

=
∫ π

θ=0
φ(cos θ) sin θ

 π sin2 θ 0 0
0 π sin2 θ 0
0 0 2π cos2 θ

 dθ

= β(Id− Ω⊗ Ω) + γΩ⊗ Ω,

with β given by (A.6) and γ = 2π
∫ π
θ=0 φ(cos θ) sin θ cos2 θ dθ. We deduce the ex-

pression (A.4) with α = γ − β leading to (A.5).
�

A.2 Coefficients of the macroscopic model

We estimate numerically the coefficients c1, c2, λ of the macroscopic models (2.25)-
(2.26) depending on the level of noise. The noise is encoded in either η or σ
depending of the choice of distribution φ (see (2.5) and (2.6)). In figure 8, we esti-
mate the coefficients in dimension d = 2. We observe that the transport coefficients
c1, c2 decay as the noise increases, whereas the pressure coefficient λ increases.
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Figure 8: Estimation of the macroscopic coefficients in dimension d = 2. Left: φ
uniform (2.5). Right: φ Von Mises (2.6). Parameters for the estimation of the
integrals: ∆θ = 2π · 10−7.
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