APM 576: Homework 1 (09/06)

1 Transport equation

Ex 1.

Write down an explicit formula for a function u solving the initial-value problem

$$\partial_t u + b \cdot \nabla_x u + cu = 0 \quad , \quad x \in \mathbb{R}^n, \ t > 0$$
$$u(x, 0) = u_0(x) \qquad , \quad x \in \mathbb{R}^n$$

where $c \in \mathbb{R}$ and $b \in \mathbb{R}^n$ are constant and $u_0(x)$ is a given function.

Ex 2.

a) Find an explicit solution to:

$$\partial_t u - x \partial_x u = 0$$
 , $x \in \mathbb{R}, t > 0$
 $u(x, 0) = u_0(x)$, $x \in \mathbb{R}$

where $u_0(x)$ is a given function.

b) Assuming u_0 is a continuous function, show that for any (fixed) $x \in \mathbb{R}$, u(x,t) converges as $t \to -\infty$.

Remark: the solution u(x,t) is transported by the flow x' = -x but it does not preserve the mass: $\frac{d}{dt} \int_{x \in \mathbb{R}} u(x,t) dx \neq 0$. We *remedy* this in the following exercise.

Ex 3. [Divergence form]

a) Solve the transport equation:

$$\begin{array}{rcl} \partial_t u + \partial_x (-xu) &= 0 &, \quad x \in \mathbb{R}, \ t > 0 \\ u(x,0) &= u_0(x) &, \quad x \in \mathbb{R} \end{array}$$

where $u_0(x)$ is a given function.

b) Assuming that $u_0(x)$ is an integrable function (i.e. $u_0 \in L^1(\mathbb{R})$), show that the total mass is preserved: $\int_{x \in \mathbb{R}} u(x,t) dx = \int_{x \in \mathbb{R}} u_0(x) dx$.

2 Heat equation

Ex 4.

Assume n = 1 and $u(x, t) = v(\frac{x}{\sqrt{t}})$.

a) Show that $u_t = u_{xx}$ if and only if v''(z) + z/2v'(z) = 0. (*) Show that the general solution to (*) is:

$$v(z) = c \int_0^z e^{-c^2/4} ds + d$$

b) Differentiate $u(x,t) = v(\frac{x}{\sqrt{t}})$ with respect to x and select the constant c properly, to obtain the fundamental solution Φ for n = 1. Explain why this procedure produces the fundamental solution.

Ex 5.

Write down an explicit formula for a solution of

$$\begin{cases} u_t - \Delta u + cu = f & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = g & \text{on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

where c is a constant.

Ex 6. [Non-uniqueness]

Consider the Heat equation with zero as initial condition:

$$\partial_t u = \partial_x^2 u \quad , \quad x \in \mathbb{R}, \ t > 0$$
$$u(x, 0) = 0 \quad , \quad x \in \mathbb{R}$$

- a) Suppose the solution u(x,t) can be written as a power series: $u(x,t) = \sum_{n=0}^{\infty} a_n(t)x^n$. Show that the coefficients have to satisfy: $a'_n(t) = (n+2)(n+1)a_{n+2}$.
- b) Deduce that a possible solution is of the form:

$$u(x,t) = \sum_{n=0}^{\infty} \frac{a_0^{(n)}(t)}{(2n)!} x^{2n}.$$

c) In order to satisfy the initial condition, the function $a_0(t)$ has to satisfy:

$$a_0^{(n)}(0) = 0,$$

where $.^{(n)}$ denotes the n^{th} derivative. Find a non-zero function satisfying these conditions.

Hint: consider a function of the form $\varphi(t) = e^{-1/t^{\alpha}}$ *for* t > 0*.*

d) Conclude about the uniqueness of solution to the heat equation.

Remark. The function $a_0(t)$ has all its derivative equal to zero at t = 0 and yet the function $a_0(t)$ is not the zero function. We have actually defined a C^{∞} function that is *not* analytic.

3 Laplace equation

Ex 7.

Prove that Laplace's equation $\Delta u = 0$ is rotation invariant; that is, if O is an orthogonal $n \times n$ matrix and we define v(x) := u(Ox) for any $x \in \mathbb{R}^n$, then

$$\Delta v = 0.$$

Ex 8.

Give a direct proof that if $\mathbf{u} \in C^2(U) \cap C^0(\overline{U})$ is harmonic within a bounded open set U, then:

$$\max_{\overline{U}} \mathbf{u} = \max_{\partial U} \mathbf{u}.$$

(Hint: Define $\mathbf{u}_{\varepsilon} := \mathbf{u} + \varepsilon |x|^2$ for $\varepsilon > 0$, and show \mathbf{u}_{ε} cannot attain its maximum over U at an interior point.)