MAT 342: Homework 4 (09/20)

1 Section 2.3

Ex. 1)

a)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$$
, $\det(A) = -7$, $\operatorname{adj}(A) = \begin{bmatrix} -1 & -2 \\ -3 & 1 \end{bmatrix}$, $A^{-1} = \begin{bmatrix} 1/7 & 2/7 \\ 3/7 & -1/7 \end{bmatrix}$.
b) $A = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$, $\det(A) = 10$, $\operatorname{adj}(A) = \begin{bmatrix} 4 & -1 \\ -2 & 3 \end{bmatrix}$, $A^{-1} = \begin{bmatrix} 4/10 & -1/10 \\ -2/10 & 3/10 \end{bmatrix}$.
c) $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 1 & 1 \\ -2 & 2 & -1 \end{bmatrix}$, $\det(A) = 3$, $\operatorname{adj}(A) = \begin{bmatrix} -3 & 5 & 2 \\ 0 & 1 & 1 \\ 6 & -8 & -5 \end{bmatrix}$, $A^{-1} = \begin{bmatrix} -1 & 5/3 & 2/3 \\ 0 & 1/3 & 1/3 \\ 2 & -8/3 & -5/3 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, $\det(A) = 1$, $\operatorname{adj}(A) = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} = A^{-1}$.

Ex. 6)

Since $A \cdot \operatorname{adj}(A) = \det(A) \cdot I$, then when A is singular (i.e. $\det(A) = 0$), $A \cdot \operatorname{adj}(A)$ is the zero matrix.

2 Section 3.1

Ex. 13)

We show that the space \mathbb{R} with the rule \otimes does not satisfy the axiom A4 (i.e. there is no element "-x"). Indeed take x = 1 in \mathbb{R} , for any element y in \mathbb{R} , we have:

$$1 \otimes y = \max(1, y) \ge 1 \neq 0.$$

Thus, one cannot have $1 \otimes y = 0$. Therefore, \mathbb{R} with the "addition" \otimes is not a subspace.

3 Section 3.2

Ex. 2)

- a) No. The zero vector is not in the subset.
- b) Yes. It is actually a line generated by: Span((1,1,1)).
- c) **Yes.** It is a plan orthogonal to the vector (1, 1, -1).
- c) No. Take $\mathbf{u} = (1, 0, 1)$ and $\mathbf{v} = (0, 1, 1)$ both in the set. The sum $\mathbf{u} + \mathbf{v} = (1, 1, 2)$ does not belong to the subset anymore.

Ex. 4) 4pts

Solving the problem $A\mathbf{x} = \mathbf{0}$ leads to:

a)
$$N(A) = \left\{ \begin{pmatrix} 0\\0 \end{pmatrix} \right\}.$$
 1 pt

b)
$$N(A) = \left\{ \begin{pmatrix} -2\alpha + 3\beta \\ \alpha \\ \beta \\ 0 \end{pmatrix}, \text{ with } \alpha, \beta \text{ scalars} \right\}.$$

1 pt

c)
$$N(A) = \left\{ \begin{pmatrix} \alpha \\ \alpha \\ \alpha \end{pmatrix}, \text{ with } \alpha \text{ scalar} \right\}.$$
 1 pt

d)
$$N(A) = \begin{cases} \begin{pmatrix} -5\alpha - \beta \\ \beta \\ -3\alpha \\ \alpha \end{pmatrix}$$
, with α, β scalars \end{cases} .

Ex. 10) 3pts

- a) S_1 subspace:
 - Let $B \in S_1$ and α scalar: $\alpha BA = \alpha(BA) = 0$. Thus, $\alpha B \in S_1$.
 - Let $B_1, B_2 \in S_1$: $(B_1 + B_2)A = B_1A + B_2A = 0$. Thus, $B_1 + B_2 \in S_1$.

Therefore, S_1 subspace.

- b) S_2 is not a subspace. Take $B \in S_2$ and $\alpha = 0$, then: $A(0 \cdot B) = (0 \cdot B)A = 0$. Thus, $0 \cdot B$ not in S_2 .
- c) S_3 subspace:

 $1 \mathrm{~pt}$

1 pt

Let B ∈ S₃ and α scalar: A(αB) + αB = α(AB + B) = 0. Thus, αB ∈ S₃.
Let B₁, B₂ ∈ S₃: A(B₁ + B₂) + (B₁ + B₂) = AB₁ + B₁ + AB₂ + B₂ = 0. Thus, B₁ + B₂ ∈ S₃.

Therefore, S_3 subspace.

Ex. 13) 3pts

a) We try to solve $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2$ which leads to:

$$\begin{bmatrix} -1 & 3 & 2 \\ 2 & 4 & 6 \\ 3 & 2 & 6 \end{bmatrix}$$

This problem does not have a solution, thus \mathbf{x} not in $\text{Span}(\mathbf{x}_1, \mathbf{x}_2)$.

b) Similarly, solving $\mathbf{y} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2$ leads to:

$$\begin{bmatrix} -1 & 3 & -9 \\ 2 & 4 & -2 \\ 3 & 2 & 5 \end{bmatrix}$$
 .5 pt

We find out that $c_1 = 3$ and $c_2 = -2$. Thus, $\mathbf{y} \in \text{Span}(\mathbf{x}_1, \mathbf{x}_2)$.

 $1 \mathrm{pt}$

.5 pt