MAT 342: Homework 6 (10/11)

Section 3.5 1

Ex. 7) 3pts

To transform from the basis $\{\mathbf{w}_1, \, \mathbf{w}_2\}$ to $\{\mathbf{v}_1, \, \mathbf{v}_2\}$, we first transform from $\{\mathbf{w}_1, \, \mathbf{w}_2\}$ to $\{e_1, e_2\}$ (i.e. W), then from $\{e_1, e_2\}$ to $\{v_1, v_2\}$ (i.e. V^{-1}). Thus,

$$S = V^{-1}W.$$
 [1pt]

where V and W are the transition matrices from resp. $\{\mathbf{v}_1, \mathbf{v}_2\}$ and $\{\mathbf{w}_1, \mathbf{w}_2\}$ to the canonical basis. Thus,

$$W = VS = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 1 \\ 9 & 4 \end{bmatrix}.$$
 [1pt]

Therefore, $\mathbf{w}_1 = (5, 9)^T$, $\mathbf{w}_2 = (1, 4)^T$.

2 Section 3.6

Ex. 1) 3pts

a) Let $A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & 4 \\ 4 & 7 & 8 \end{bmatrix}$. Solving $A\mathbf{x} = \mathbf{0}$, we find that $\mathbf{x} = (-2\alpha, 0, \alpha)$. Thus, the

nullspace of A is given by $N(A) = \text{Span}((-2, 0, 1)^T)$ and $\dim(N(A)) = 1$.

We deduce that the row and column space are subspaces of dimension 2 (i.e. 3-1). Thus, we only have to take two linearly independent vectors to form a basis of those subspace. For instance,

$$Im(A) = Span((1,2,4)^T, (3,1,7)^T)$$
 .5 pt

$$Im(A) = Span((1,2,4)^{T}, (3,1,7)^{T})$$

$$Im(A^{T}) = Span((1,3,2)^{T}, (2,1,4)^{T}).$$

$$\overline{.5 \text{ pt}}$$

where Im(A) denotes the column space and $\text{Im}(A^T)$ the row space.

b) Let
$$B = \begin{bmatrix} 1 & 3 & -2 & 1 \\ 2 & 1 & 3 & 2 \\ 3 & 4 & 5 & 6 \end{bmatrix}$$
. Solving $B\mathbf{x} = \mathbf{0}$ yields:

.5 pt

1pt

.5 pt

$$N(B) = \left\{ \begin{pmatrix} 10/7 \alpha \\ 2/7 \alpha \\ 0 \\ \alpha \end{pmatrix} \text{ with } \alpha \text{ scalar} \right\} = \frac{\operatorname{Span}((10, 2, 0, 7)^T).$$

Thus, $\dim(N(B)) = 1$. We deduce that the row space and column space have dimension 3.

Since the column space is of dimension 3 in \mathbb{R}^3 , we have: $\text{Im}(A) = \mathbb{R}^3$. Thus, we can take for basis of Im(A) the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$. For the row space, we already know that

$$\operatorname{Im}(B^{T}) = \operatorname{Span}((-3, 1, 3, 4)^{T}, (1, 2, -1, -2)^{T}, (-3, 8, 4, 2)^{T}).$$

 $.5 \mathrm{pt}$

Since the dimension of the row space is 3, we have necessarily that those 3 vectors are linearly independent. Thus, they form a basis of the row space.

c) Let
$$C = \begin{bmatrix} 1 & 3 & -2 & 1 \\ 2 & 1 & 3 & 2 \\ 3 & 4 & 5 & 6 \end{bmatrix}$$
. Solving $C\mathbf{x} = \mathbf{0}$ leads to:
$$N(C) = \operatorname{Span}\left((10 - \frac{9 \cdot 7}{5}, \frac{3 \cdot 7}{5}, 3, -4)\right)$$

Similarly to **b**), we deduce that the standard basis of \mathbb{R}^3 is a basis of $\operatorname{Im}(A)$ and the 3 row vectors of A form a basis of $\operatorname{Im}(A^T)$.

Ex. 8)

Let A a $m \times n$ matrix with m > n with $N(A) = \{\mathbf{0}\}.$

- a) By the rank-nullity theorem, Im(A) is a vector space of dimension n. The column vectors are linearly independent but they do not span \mathbb{R}^m : $\dim(\text{Im}(A)) = n < m$.
- b) The problem $A\mathbf{x} = \mathbf{b}$ has no solution if \mathbf{b} is not in the column space. If \mathbf{b} is in the column space, then there exists a solution \mathbf{x} and this solution is necessarily unique since $N(A) = \{\mathbf{0}\}$.

Proof of the last statement. Suppose there exists a second solution \mathbf{z} such that $A\mathbf{z} = \mathbf{b}$. Then we have:

$$A(\mathbf{x} - \mathbf{z}) = A\mathbf{x} - A\mathbf{z} = \mathbf{b} - \mathbf{b} = \mathbf{0}.$$

Thus, $\mathbf{x} - \mathbf{z}$ is in the null space of A. Since $N(A) = \{\mathbf{0}\}$, we have $\mathbf{x} - \mathbf{z} = \mathbf{0}$. Therefore, $\mathbf{x} = \mathbf{z}$ and we conclude that the solution is unique.

3 Section 4.1

Ex. 2) Using polar coordinates (i.e. $x_1 = r \cos \theta$, $x_2 = r \sin \theta$), we find:

$$L(\mathbf{x}) = (r\cos(\theta + \alpha), r\sin(\theta + \alpha))^T.$$

Thus, $L(r, \theta) = (r, \theta + \alpha)$. L is a rotation of angle α .

Ex. 3) Let L be a translation. L is not a linear application since:

$$L(2\mathbf{x}) = 2\mathbf{x} + \mathbf{a} \neq 2(\mathbf{x} + \mathbf{a}) = 2L(\mathbf{x}).$$

Ex. 6)

- a) Not linear: $L(\mathbf{0}) \neq \mathbf{0}$.
- b) Linear.
- c) Linear.
- d) Not linear: $L((3,3,3)) \neq 3L((1,1,1)).$

4 Section 4.2

Ex. 5) 4pts

There are two different methods to find the matrix representation A of L:

i) <u>Geometric method</u>: find the images of the vectors \mathbf{e}_1 , \mathbf{e}_2 through L (see figure 1). Then, write:

$$A = \left[\begin{array}{cc} | & | \\ L(\mathbf{e}_1) & L(\mathbf{e}_2) \\ | & | \end{array} \right].$$

ii) Algebraic method: decompose A in term of rotation and symmetry. For example,

A = R S

where R is a rotation and S a symmetry.

a)
$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ -\sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}.$$
 [1 pt]

b)
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

c)
$$A = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}.$$
 [1 pt]

d)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$
 1 pt

Figure 1: To obtain the matrix representation of a linear transformation L, one can simply find the image of the basis $\{\mathbf{e}_1, \mathbf{e}_2\}$.