MAT 342: Homework 6 (10/11)

1 Section 3.5
Ex. T) 3pts
To transform from the basis {wy, wa} to {v1, vo}, we first transform from {w;, wy}
to {e1, €2} (i.e. W), then from {e;, es} to {vy, vo} (i.e. V1), Thus,
S=V1w. Ipt

where V' and W are the transition matrices from resp. {vy, vo} and {wy, wo} to the
canonical basis. Thus,

G tH LR

2 3 1 2 9 4

Therefore, w; = (5,9)%, wy = (1,4)T.

1pt
2 Section 3.6
Ex. 1) 3pts
1 3 2
a) Let A= |2 1 4 |. Solving Ax = 0, we find that x = (—2«,0,«). Thus, the
4 7 8
nullspace of A is given by N(A) = Span((—2, 0, 1)T) and dim(N(A)) = 1.
We deduce that the row and column space are subspaces of dimension 2 (i.e. 3 — 1).
Thus, we only have to take two linearly independent vectors to form a basis of those
subspace. For instance,
Im(4) = Span((1,2,4)", (3,1,7)") 5 pt
Im(A”") = Span((1,3,2)", (2,1,4)"). 5 pt

where Im(A) denotes the column space and Im(AT) the row space.

13 =21
b)Let B=|2 1 3 2 |. Solving Bx = 0 yields:
34 5 6




10/7a
N(B) = 2/ g @ with o scalar p = Span((10,2,0,7)").

«

Thus, dim(N(B)) = 1. We deduce that the row space and column space have dimension
3.

Since the column space is of dimension 3 in R?, we have: Im(A) = R3. Thus, we can
take for basis of Im(A) the standard basis {ej, es, e3}. For the row space, we already
know that

Im(B”) = Span((—S, 1,3,4)", (1,2,—-1,-2)", (—3,8,4, 2)T).

Since the dimension of the row space is 3, we have necessarily that those 3 vectors are
linearly independent. Thus, they form a basis of the row space.

1 3 -2 1
c)LetC=|2 1 3 2|. Solving Cx = 0 leads to:
34 5 6
9.-7 3.7
N(C) :Span<(1()— - 1 —4)).
5

Similarly to b), we deduce that the standard basis of R? is a basis of Im(A) and the 3
row vectors of A form a basis of Im(AT).

Ex. 8)
Let A a m x n matrix with m > n with N(A4) = {0}.

a) By the rank-nullity theorem, Im(A) is a vector space of dimension n. The column
vectors are linearly independent but they do not span R™: dim(Im(A4)) =n < m.

b) The problem Ax = b has no solution if b is not in the column space. If b is in the
column space, then there exists a solution x and this solution is necessarily unique

since N(A) = {0}.

Proof of the last statement. Suppose there exists a second solution z such that
Az = b. Then we have:

A(x—z):Ax—Az:b—b:O.

Thus, x — z is in the null space of A. Since N(A) = {0}, we have x —z = 0.
Therefore, x = z and we conclude that the solution is unique.

3 Section 4.1

Ex. 2) Using polar coordinates (i.e. x; = rcosf, o = rsinf), we find:
L(x) = (rcos(f + a), rsin(d + a))’.

2



Thus, L(r,0) = (1,0 + «). L is a rotation of angle a.

Ex. 3) Let L be a translation. L is not a linear application since:
L(2x) = 2x +a # 2(x + a) = 2L(x).
Ex. 6)

a) Not linear: L(0) # 0.

Linear.

)
b) Linear.
c)

)

d) Not linear: L((3,3,3)) # 3L((1,1,1)).

4 Section 4.2

Ex. 5) 4pts
There are two different methods to find the matrix representation A of L:

i) Geometric method: find the images of the vectors e;, ey through L (see figure 1).

Then, write:

A

ii) Algebraic method: decompose A in term of rotation and symmetry. For example,

A=RS

where R is a rotation and S a symmetry.

oa= [y )= 3R )
wa=[0 310 S1-100)
aa=[% 13811 %]
oa=[5 8]0 8]I00
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Figure 1: To obtain the matrix representation of a linear transformation L, one can
simply find the image of the basis {e, e5}.



