
MAT 342: Homework 7 (10/18)

1 Section 4.2
Ex. 7) 3pts

We denote B = {y1, y2, y3}. We notice that B is a basis: det(y1, y2, y3) = −1 6= 0.

.5 pta) e1 = y3, thus [e1]B =

 0
0
1

.
e2 = y2 − y3, thus [e2]B =

 0
1
−1

.
.5 pt

e3 = y1 − y2, thus [e3]B =

 1
−1

0

.
.5 pt

b) Denote by U the transition matrix from the new basis B to the old one:

.5 ptU = [y1 y2 y3] =

 1 1 1
1 1 0
1 0 0

.

Since B is a basis, the matrix U has to be non-singular (i.e. invertible).
For any vector x written in the canonical basis, we have: [x]B = U−1x, where:

1 ptU−1 =

 0 0 1
0 1 −1
1 −1 0

.

Remark. Notice that: [e1]B = U−1(1, 0, 0)T and similarly for e2 and e3.
Ex. 8) 3pts

a) In the basis B, we have:

L(c1, c2, c3) =

 c1 + c2 + c3
2c1 + c3
−2c2 − c3

 .
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Thus, in the basis B, the linear transformation L is represented by the matrix:

1 ptD =

 1 1 1
2 0 1
0 −2 −1

.

b) i) [x]B = U−1x =

 2
3
2

. Thus, x = 2y1 + 3y2 + 2y3. We deduce that:
1 pt

1 pt
[L(x)]B = D [x]B =

 1 1 1
2 0 1
0 −2 −1


 2

3
2

 =

 7
6
−8

.

Thus, L(x) = 7y1 + 6y2 − 8y3. Therefore, in the canonical basis, we can write:

L(x) =

 5
13
7

 .

Remark. Another method consists in finding A the matrix representation of the
linear transformation L in the canonical basis. For that, we use the formula (see
figure 1):

A = U D U−1.

where U and U−1 are the transition matrices from resp. the new basis to the
canonical basis and vice-versa. We obtain:

A =

 1 1 1
1 1 0
1 0 0


 1 1 1

2 0 1
0 −2 −1


 1 1 1

1 1 0
1 0 0

 =

 1 −2 4
2 −1 2
1 0 0

 .

Therefore,

L(x) = Ax =

 1 −2 4
2 −1 2
1 0 0


 7

5
2

 =

 5
13
7

 .

ii) L(x) = Ax =

 3
6
3

 . iii) L(x) = Ax =

 9
6
1

 .
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Figure 1: Formula for the change of basis.

2 Section 4.3
Ex. 1)

Denote U =
[

1 −1
1 1

]
and thus U−1 = 1

2

[
1 1
−1 1

]
.

a) A =
[
−1 0

0 1

]
, D = U−1AU =

[
0 1
1 0

]
.

b) A = D =
[
−1 0

0 −1

]
.

c) A =
[

0 1
1 0

]
, D = U−1AU =

[
1 0
0 −1

]
.

d) A = D =
[

1
2 0
0 1

2

]
.

d) A =
[

0 0
0 1

]
, D = U−1AU = 1

2

[
1 1
1 1

]
.

Ex. 5)

a) L(1) = 0, L(x) = x, L(x2) = x2x + 2 = 2x2 + 2. Thus, the matrix representation
of L on the basis {1, x, x2} is given by:

A =

 0 0 2
0 1 0
0 0 2


3



b) In the basis {1, x, x2}, we obtain:

B =

 0 0 0
0 1 0
0 0 2


c) The vectors u1 = 1, u2 = x, u3 = (1+x2) of the new basis form a transition matrix:

S =

 1 0 1
0 1 0
0 0 1


using that u3 = e1 + e3 with e1 = 1, e2 = x and e3 = x2.

d) We use the new basis:

(
Ln(p(x))

)
B

= Bn

 a0
a1
a2

 =

 0 0 0
0 1 0
0 0 2


n a0

a1
a2

 =

 0 0 0
0 1 0
0 0 22


 a0

a1
a2

 =

 0
a1

2na2

 .

In other words:

Ln(p(x)) = 0 · u1 + a1 · u2 + 2na2 · u3 = a1x + 2na2(1 + x2).

Ex. 13)
If A and B are similar, i.e. A = PBP−1, then: det(A) = det(B). Thus, if A

nonsingular, we have det(A) 6= 0 and therefore det(B) 6= 0 as well. We conclude that B
is nonsingular.

To show that A−1 and B−1 are similar, we perform the following computation:

A−1 = (PBP−1)−1 ⇒ A−1 = (P−1)−1B−1P−1 ⇒ A−1 = PB−1P−1,

where we use (AB)−1 = B−1A−1 and (P−1)−1 = P . Thus, A−1 and B−1 are similar.

3 Section 5.1
Ex. 5) 2pts

Let b = (5, 2) and x = (1, 2). We try to find the closest point to b on the line
Span(x). We use for that the projection:

1+1 pts
p = 〈b, x〉

‖x‖2 x = 5 + 4
1 + 4

(
1
2

)
=
(

9
5
18
5

)
.
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Ex. 10)
Let n = (2, 2, 1) the normal vector to the plane P , i.e. the plane is given by Span(n)⊥.

To find the projection of the point b = (1, 1, 1), we first compute the distance of b on
Span(n) (see figure 2):

p = 〈b, n〉
‖n‖2 x = 2 + 2 + 1

4 + 4 + 1

 2
2
1

 = 5
9

 2
2
1

 .

The distance from b to the plane is then given by:

‖p‖ = 5
9
√

(22 + 22 + 1) = 5.

Figure 2: To find the distance of a point b to a plane P , we compute its projection onto
the orthogonal vector to the plane n.
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