MAT 342: Homework 7 (10/18)

1 Section 4.2

Ex. T) 3pts

We denote B = {y;, y2, y3}. We notice that B is a basis: det(yi, y2, y3) = —1 # 0.

0
a) e; =Yys, thus [e;]g = ( 0 )

1

0
e = y2 — 3, thus [es]s = ( 1 )

1
€3 =yi1 — Yo, thus [es]z = ( —1 )
0

b) Denote by U the transition matrix from the new basis B to the old one:
1 11
U=lyiy2y3)=|1 1 0],
100

Since B is a basis, the matrix U has to be non-singular (i.e. invertible).

For any vector x written in the canonical basis, we have: [x|z = U~'x, where:

0 0 1
Ul=10 1 —-1].
1 -1 0

Remark. Notice that: [e;]s = U1(1,0,0)" and similarly for e; and es.
Ex. 8) 3pts

a) In the basis B, we have:

c1+cy+c3
L(Cl,Cg,C;g) = 2C1 +Cg
—202 — C3

ot
o
=+

Ot
e
=+

ot
—t

[©]

-



Thus, in the basis B, the linear transformation L is represented by the matrix:

1 1 1
D=2 0 1
0 -2 -1
2
i) [x]g=U"'x=| 3 |. Thus, x = 2y; + 3y2 + 2y3. We deduce that:
2
1 1 1 2 7
Lx)s=Dxls=]2 0 1][3]|=] o
0 -2 -1 2 -8

Thus, L(x) = Ty; + 6y2 — 8ys. Therefore, in the canonical basis, we can write:

5
L(x)=] 13
7

Remark. Another method consists in finding A the matrix representation of the
linear transformation L in the canonical basis. For that, we use the formula (see
figure 1):

A=UDU "

where U and U~! are the transition matrices from resp. the new basis to the
canonical basis and vice-versa. We obtain:

1 11 1 1 1 1 11 1 -2 4
A=111 0 2 0 1 11 0|=]2 -1 2
100 0 -2 -1 1 00 1 00
Therefore,
1 -2 4 7 )
Lx)=Ax= |2 —1 2 5 =1 13
1 00 2 7
3 9
i) L(x)=Ax=| 6 iii) L(x) = Ax=| 6
3 1
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Figure 1: Formula for the change of basis.
2 Section 4.3
Ex. 1)
11— 11 1 1
Deno‘ceU—[1 1]andthusU _Ql_l 1].

@A:[‘é?LD:U4Mh:V ﬂ.

10
b)A:D:[_1 0]

0 -1
@A:l?éLD:Ulﬂh{é_j}
@A:D:[%g]

d)A—lg H,D:U%U:%“ ”

Ex. 5)

a) L(1) =0, L(z) = z, L(x?) = 22z + 2 = 22> + 2. Thus, the matrix representation
of L on the basis {1, z, 2%} is given by:

A:

oS O O
o = O

N O N
|



b) In the basis {1, z, 2%}, we obtain:

0 0
B=101
0 0

0
0
2
c¢) The vectors u; = 1, uy = x, uz = (1+2?) of the new basis form a transition matrix:

1
0
1

Wn

I
OO =
O = O

using that us = e; + e; with e; = 1, e; = 2 and e = 2°.
d) We use the new basis:
Qo
(anxx»)::Bn o | =
B
5]
In other words:

L"(p(z)) =0-u; +ay - ug +2"as - uz = a17 + 2"a(1 + 2?).

Ex. 13)

If A and B are similar, i.e. A = PBP™! then: det(A) = det(B). Thus, if A
nonsingular, we have det(A) # 0 and therefore det(B) # 0 as well. We conclude that B
is nonsingular.

To show that A=! and B~! are similar, we perform the following computation:

A—l — (PBP—I)—I = A—l — (P—l)—lB—IP—l = A—l — PB_IP_17

where we use (AB)™! = B'A7! and (P~1)"! = P. Thus, A~! and B™! are similar.

3 Section 5.1

Ex. 5) 2pts
Let b = (5,2) and x = (1,2). We try to find the closest point to b on the line

Span(x). We use for that the projection:
(b, x) 5+4<1> ( )
p— 1 .
5

P k™ 144\ 2
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Ex. 10)
Let n = (2,2, 1) the normal vector to the plane P, i.e. the plane is given by Span(n)*.
To find the projection of the point b = (1,1,1), we first compute the distance of b on

Span(n) (see figure 2):

by 24241 (2) s5(2
A W) R

The distance from b to the plane is then given by:

5
Ipll = §ﬂ22 +2241) =5

= 0

Figure 2: To find the distance of a point b to a plane P, we compute its projection onto
the orthogonal vector to the plane n.



