MAT 342: Homework 7 (10/18)

1 Section 5.4

Ex. 23) Take $x = (1,0)^T$.

Ex. 28) We take a = 0 and b = 1 to simplify the notation.

- a) Not a norm. Take f(x) continuous such that f(0) = f(1) = 0 and f(.5) = 1. The function f is not zero, but ||f|| = |f(0)| + |f(1)| = 0.
- b) It is a norm, it is the equivalent of $\|.\|_1$ for functions.
- c) It is a norm, it is the equivalent of $\|.\|_{\infty}$ for functions.

2 Section 5.5

Ex. 2) 3 pts

- a) $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = \langle \mathbf{u}_2, \mathbf{u}_3 \rangle = \langle \mathbf{u}_1, \mathbf{u}_3 \rangle = 0, \|\mathbf{u}_1\| = \|\mathbf{u}_2\| = \|\mathbf{u}_3\| = 1.$
- b) Let $\mathbf{x} = (1, 1, 1)$. We have:

$$\mathbf{x} = \langle \mathbf{x}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \langle \mathbf{x}, \mathbf{u}_2 \rangle \mathbf{u}_2 + \langle \mathbf{x}, \mathbf{u}_3 \rangle \mathbf{u}_3$$
$$= -\frac{2}{3\sqrt{2}} \mathbf{u}_1 + \frac{5}{3} \mathbf{u}_2 + 0.$$

Thus, we deduce by the Parseval's formula that:

$$\|\mathbf{x}\| = \sqrt{\left(\frac{2}{3\sqrt{2}}\right)^2 + \left(\frac{5}{3}\right)^2} = \sqrt{\frac{2}{9} + \frac{25}{9}} = \sqrt{3}.$$

Ex. 8) 2 pts

We expand the inner product:

$$\langle f, g \rangle = \langle 3 \cos x + 2 \sin x, \cos x - \sin x \rangle$$

$$= 3 \langle \cos x, \cos x \rangle - 3 \langle \cos x, \sin x \rangle +$$

$$2 \langle \sin x, \cos x \rangle - 2 \langle \sin x, \sin x \rangle$$

$$= 3 - 0 + 0 - 2$$

$$= 1.$$

Ex. 12)

Since Q is an orthogonal matrix, it preserves the inner product and the norm:

$$\langle Qx, Qy \rangle = \langle x, Q^T Qy \rangle = \langle x, y \rangle$$
 , $||Qx|| = ||x||$.

Thus, the angle between x and y is the same as the angle between Qx and Qy:

$$\operatorname{angle}(x,y) = \operatorname{acos}\left(\frac{\langle x,y\rangle}{\|x\|\|y\|}\right) = \operatorname{acos}\left(\frac{\langle Qx,Qy\rangle}{\|Qx\|\|Qy\|}\right) = \operatorname{angle}(Qx,Qy).$$

Ex. 14)

Let $H = I - 2uu^T$ (H is a reflection onto the plane $S = u^{\perp}$).

- H orthogonal: $H^T H = (I^T 2(uu^T)^T)(I 2uu^T) = I 4uu^T + 4uu^T uu^T = I$.
- H symmetric: $H^T = I^T 2(uu^T)^T = I 2uu^T = H$.

Thus, $H^{-1} = H^T = H$.

Ex. 30) 3pts

a) $\langle 1, 2x - 1 \rangle = \int_0^1 1 \cdot (2x - 1) dx = \left[x^2 - x \right]_0^1 = 0$. Thus, the functions 1 and 2x - 1 are orthogonal for this inner product.

b)
$$||1|| = \left(\int_0^1 1 \cdot 1 \, dx\right)^{\frac{1}{2}} = 1.$$

 $||2x - 1||^2 = \int_0^1 (2x - 1)^2 \, dx = \left[\frac{(2x - 1)^3}{6}\right]_0^1 = \frac{1}{3}.$ Thus, $||2x - 1|| = \frac{1}{\sqrt{3}}.$

c) We use the orthonormal basis of S given by:

1 and
$$\sqrt{3}(2x-1)$$
.

Thus, the best least square approximation of $f(x) = \sqrt{x}$ onto S is given by:

$$p(x) = c_1 \cdot 1 + c_2 \cdot \sqrt{3}(2x - 1),$$

with:

$$c_{1} = \langle \sqrt{x}, 1 \rangle = \left[\frac{2}{3} (x)^{\frac{3}{2}} \right]_{0}^{1} = \frac{2}{3}.$$

$$c_{2} = \langle \sqrt{x}, \sqrt{3}(2x - 1) \rangle = \sqrt{3} \int_{0}^{1} \sqrt{x}(2x - 1) dx$$

$$= \sqrt{3} \left[\frac{4}{5} x^{5/2} - \frac{2}{3} x^{3/2} \right]_{0}^{1} = \frac{2\sqrt{3}}{15}.$$

$$.5 \text{ pt}$$

$$.5 \text{ pt}$$

In other words, we obtain:

$$p(x) = \frac{2}{3} \cdot 1 + \frac{2\sqrt{3}}{15} \cdot \sqrt{3}(2x - 1) = \frac{4}{15} + \frac{4}{5}x.$$

3 Section 5.6

Ex. 1) 2pts

a) Let
$$\mathbf{x}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 and $\mathbf{x}_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$.

We have
$$\|\mathbf{x}_1\| = \sqrt{1+1} = \sqrt{2}$$
. Thus, $\mathbf{u}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

The projection of \mathbf{x}_2 on \mathbf{u}_1 is given by:

$$\mathbf{p}_1 = \langle \mathbf{x}_2, \mathbf{u}_1 \rangle \mathbf{u}_1 = \frac{-3+5}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Thus, $\mathbf{x}_2 - \mathbf{p}_1 = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ and $\|\mathbf{x}_2 - \mathbf{p}_1\| = 4\sqrt{2}$. We can take for \mathbf{u}_2 the vector:

$$\mathbf{u}_2 = \frac{\mathbf{x}_2 - \mathbf{p}_1}{\|\mathbf{x}_2 - \mathbf{p}_1\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}.$$

1 pt

b) Let
$$\mathbf{x}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 and $\mathbf{x}_2 = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$.

Using a similar procedure, we find:

$$\mathbf{u}_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2\\1 \end{pmatrix}$$
 and $\mathbf{u}_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} -1\\2 \end{pmatrix}$.